生态与环境科学

上海市鲁迅公园浮游植物群落结构分析及评价

  • 崔丹 ,
  • 李莹 ,
  • 陈体达 ,
  • 黄民生
展开
  • 华东师范大学 生态与环境科学学院, 上海 200241

收稿日期: 2020-11-30

  网络出版日期: 2022-05-19

基金资助

国家重大科技专项(2018ZX07208008, 2017ZX07207001)

Analysis and evaluation of the phytoplankton community structure in Luxun Park, Shanghai

  • Dan CUI ,
  • Ying LI ,
  • Tida CHEN ,
  • Minsheng HUANG
Expand
  • School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China

Received date: 2020-11-30

  Online published: 2022-05-19

摘要

为揭示鲁迅公园湖泊水体浮游植物的群落结构特征和水体健康状态, 于2019年1—10月对鲁迅公园湖泊水体进行了生态学调查, 分析了浮游植物的群落组成、密度、生物量、多样性、均匀度及优势种. 共鉴定出浮游植物8门83属, 其中蓝藻门、绿藻门和硅藻门物种数量最多, 全年平均细胞密度为14.17 × 106 ind/L, 全年平均生物量为3.57 mg/L, 平均细胞密度和生物量都随着季度变化而增加; 优势门类为蓝藻门、绿藻门和硅藻门, 主要代表属有伪鱼腥藻、平裂藻、栅藻、小环藻. 采用冗余分析对鲁迅公园湖泊水体中的环境因子与浮游植物之间的关系进行了进一步解析, 结果表明, pH值、硝态氮、亚硝氮和高锰酸盐指数是影响浮游植物群落结构的关键影响因子.

本文引用格式

崔丹 , 李莹 , 陈体达 , 黄民生 . 上海市鲁迅公园浮游植物群落结构分析及评价[J]. 华东师范大学学报(自然科学版), 2022 , 2022(3) : 27 -38 . DOI: 10.3969/j.issn.1000-5641.2022.03.004

Abstract

In this study, an ecological survey of the lake water in Luxun Park from January to October 2019 was conducted to determine the community structure characteristics and health of phytoplankton in the water. In particular, the community composition, density, biomass, diversity, uniformity, and dominant species of phytoplankton were analyzed. A total of 83 genera of 8 phyla of phytoplankton were identified; of these, Cyanophyta, Chlorophyta, and Diatoms had the largest number of species. The annual average cell density was 14.17×106 ind/L, and the annual average biomass was 3.57 mg/L. Density and biomass typically increase with seasonal changes. The dominant phyla were the Cyanophyta, Chlorophyta, and Diatom phylum; meanwhile, Pseudo-Anabaena, Platychophyta, Scenedesmus, and Cyclotella were the major dominant species. Redundant analysis was used to further analyze the environmental factors in the lake water of Luxun Park. The results showed that pH, nitrate nitrogen, nitrous nitrogen, and permanganate index are the key factors affecting the structure of the phytoplankton community.

参考文献

1 PAERL H W, VALDES L M, PINCKNEY J L, et al. Phytoplankton photopigments as indicators of estuarine and coastal eutrophication. BioScience, 2003, 53 (10): 953- 964.
2 CARDINALE B J, BENNETT D M, NELSON C E, et al. Does productivity drive diversity or vice versa? A test of the multivariate productivity–diversity hypothesis in streams. Ecology, 2009, 90 (5): 1227- 1241.
3 杨文, 朱津永, 陆开宏, 等. 淡水浮游植物功能类群分类法的提出、发展及应用 [J]. 应用生态学报, 2014, 25(6): 1833-1840.
4 CLOERN J. Our evolving conceptual model of the coastal eutrophication problem. Marine Ecology Progress Series, 2001, 210, 223- 253.
5 XAVIER L, VALE M, VASCONCELOS V M. Eutrophication, phytoplankton dynamics and nutrient removal in two man-made urban lakes (Palácio de Cristal and Serralves), Porto, Portugal. Lakes & Reservoirs: Research and Management, 2007, 12 (3): 209- 214.
6 PINCKNEY J L, PAERl H W, HARRINGTON M B, et al. Annual cycles of phytoplankton community-structure and bloom dynamics in the Neuse River Estuary, North Carolina. Marine Biology, 1998, 131 (2): 371- 381.
7 MONCHEVA S, GOTSIS-SKRETAS O, PAGOU K, et al. Phytoplankton blooms in black sea and mediterranean coastal ecosystems subjected to anthropogenic eutrophication: Similarities and differences. Estuarine, Coastal and Shelf Science, 2001, 53 (3): 281- 295.
8 张艳艳, 魏金豹, 黄民生, 等. 环境因子对滴水湖浮游植物生长的影响分析. 华东师范大学学报(自然科学版), 2015, (2): 48- 57.
9 THOMAS J B, ALI A A H, MARK J H, et al. Nutrient regulation of late spring phytoplankton blooms in the midlatitude North Atlantic. Limnology and Oceanography, 2020, 65 (6): 1136- 1148.
10 HITOMI Y, NOZOMI K, KAZUHIKO I, et al. Seasonal variations in phytoplankton productivity in a shallow cove in the eastern Seto Inland Sea, Japan. Fisheries Science, 2020, 86, 1067- 1078.
11 DUTKIEWICZ S, CERMENO P, JAHN O, et al. Dimensions of marine phytoplankton diversity [J]. Biogeosciences. 2020, 17(3): 609-634.
12 RIGHETTI D, VOGT M, GRUBER N, et al. Global pattern of phytoplankton diversity driven by temperature and environmental variability. Sci Adv, 2019, 5 (5): eaau6253.
13 BELIN C, SOUDANT D, AMAIL Z. Three decades of data on phytoplankton and phycotoxins on the French coast: Lessons from REPHY and REPHYTOX. Harmful Algae, 2021, 102, 101733.
14 俞建, 于海燕, 俞洁, 等. 浙江省两类水源地浮游植物群落组成及季节动态比较研究. 环境科学与管理, 2020, 45 (8): 103- 107.
15 栾青杉, 康元德, 王俊. 黄海浮游植物群落的长期变化(1985—2015). 中国水产科学, 2020, 27 (1): 1- 12.
16 刘晓曦, 陈丽, 蒋伊能, 等. 抚仙湖浮游植物群落时空变化特征及其与环境因子的关系. 湖泊科学, 2020, 32 (3): 793- 803.
17 李亚亮. 上海市公园绿地景观特征分析及生态效益评价 [D]. 合肥: 安徽农业大学, 2010.
18 路晓锋, 林青, 韦雪柠, 等. 浮游植物样品的前处理优化及计数方法研究. 中国环保产业, 2018, (9): 53- 57.
19 钱奎梅, 刘霞, 陈宇炜. 淡水浮游植物计数与定量方法. 湖泊科学, 2015, (5): 767- 775.
20 铁程, 张榆霞, 金玉, 等. 显微镜计数法测定浮游植物的研究进展及修订建议. 中国环境监测, 2018, 34 (6): 179- 186.
21 吴雪, 李希磊, 杨俊丽, 等. 莱州湾扇贝养殖区浮游藻类的生态特征. 水产科学, 2017, 36 (3): 347- 352.
22 沈韫芬, 顾曼如, 龚循矩, 等. 微型生物监测新技术 [M]. 北京: 中国建筑工业出版社, 1990: 120-125.
23 OLDING D D, HELLEBUST J A, DOUGLAS M S V. Phytoplankton community composition in relation to water quality and water-body morphometry in urban lakes, reservoirs, and ponds. Canadian Journal of Fisheries and Aquatic Sciences, 2000, 57 (10): 2163- 2174.
24 安瑞志, 潘成梅, 塔巴拉珍, 等. 西藏巴松错浮游植物功能群垂直分布特征及其与环境因子的关系. 湖泊科学, 2021, 33 (1): 86- 101.
25 沈琴. 上海市主要景观水体浮游植物群落特征及水质评价 [D]. 上海: 上海师范大学, 2016.
26 孙军, 刘东艳. 多样性指数在海洋浮游植物研究中的应用. 海洋学报(中文版), 2004, (1): 62- 75.
27 况琪军, 胡征宇, 周广杰, 等. 香溪河流域浮游植物调查与水质评价. 武汉植物学研究, 2004, (6): 507- 513.
28 吴天浩, 刘劲松, 邓建明, 等. 大型过水性湖泊——洪泽湖浮游植物群落结构及其水质生物评价. 湖泊科学, 2019, 31 (2): 440- 448.
29 ANGELER D G, DRAKARE S. Tracing alpha, beta, and gamma diversity responses to environmental change in boreal lakes. Oecologia, 2013, 172 (4): 1191- 1202.
30 王亚尼, 周序协, 张桂蓉, 等. 大茶湖浮游藻类调查与水质初步评价. 华中农业大学学报, 2013, 32 (3): 118- 123.
31 况琪军, 马沛明, 胡征宇, 等. 湖泊富营养化的藻类生物学评价与治理研究进展. 安全与环境学报, 2005, (2): 87- 91.
32 夏莹霏, 胡晓东, 徐季雄, 等. 太湖浮游植物功能群季节演替特征及水质评价. 湖泊科学, 2019, 31 (1): 134- 146.
33 任辉, 田恬, 杨宇峰, 等. 珠江口南沙河涌浮游植物群落结构时空变化及其与环境因子的关系. 生态学报, 2017, 37 (22): 7729- 7740.
文章导航

/