收稿日期: 2021-02-01
网络出版日期: 2022-05-19
基金资助
上海市科学技术委员会重点项目(14231200400, 17DZ1202700)
Analysis of changes in water quality at the Qingcaosha Reservoir water intake over a period of 10 years
Received date: 2021-02-01
Online published: 2022-05-19
基于青草沙水库取水口2010—2019年这10年的日监测数据, 对水质的主要理化指标进行了年际和季节性变化趋势分析, 并探讨了理化指标间的关联关系. 结果表明: ①青草沙水库取水口溶解氧浓度始终保持较高水平, pH值呈现弱碱性; ②取水口氨氮浓度较低, 硝酸盐氮浓度介于1.2 ~ 2.0 mg/L, 总磷浓度为0.1 ~ 0.2 mg/L, 高锰酸盐指数浓度为2.0 ~ 4.0 mg/L, 且这4项指标从2015年开始均呈下降趋势, 表明来水水质进一步变好; ③溶解氧浓度、水温和pH值存在明显的四季变化, 而总硬度、永久硬度、电导率和氯化物这4项指标受海水入侵影响且季节变化基本一致, 其余指标随季节变化差异不明显; ④总磷浓度、高锰酸盐指数浓度随浊度的升高而升高, 总磷浓度和硝酸盐氮浓度随着大通流量的增加而呈现下降趋势.
朱宜平 . 近十年来青草沙水库取水口水质变化趋势分析[J]. 华东师范大学学报(自然科学版), 2022 , 2022(3) : 50 -60 . DOI: 10.3969/j.issn.1000-5641.2022.03.006
Based on daily monitoring data of the Qingcaosha Reservoir water intake from 2010 to 2019, this paper analyzes the interannual and seasonal variation trends in the main physical and chemical water quality indicators, and explores the correlation between these indicators. The results show that: ① The dissolved oxygen at the intake of Qingcaosha Reservoir was consistently high, and the pH value was slightly alkaline. ② The concentration of ammonia nitrogen was low at the intake of Qingcaosha Reservoir, the concentration of nitrate-nitrogen was between 1.2 and 2.0 mg/L, the concentration of total phosphorus was between 0.1 and 0.2 mg/L, and the permanganate index was between 2.0 and 4.0 mg/L. These indexes, furthermore, all showed a downward trend after 2015, suggesting that the quality of incoming water subsequently improved. ③ Dissolved oxygen concentration, water temperature, and pH exhibited obvious seasonal variations, while total hardness, permanent hardness, conductivity, and chloride showed consistent variations under the influence of seawater intrusion. There was no significant seasonal variation in the other indicators. ④ The concentration of total phosphorus and the permanganate index increased with turbidity. The concentration of total phosphorus and nitrate nitrogen, moreover, decreased with an increase in water discharge at Datong.
1 | 张宏伟, 吴健, 车越. 长江口青草沙水源地开发的生态环境影响. 华东师范大学学报(自然科学版), 2009, (3): 38- 47. |
2 | 乐勤, 关许为, 刘小梅, 等. 青草沙水库取水口选址与取水方式研究. 给水排水, 2009, 45 (2): 46- 51. |
3 | 肖群, 梁国康. 潮汐河段水库建设期水环境监测及评价——以上海青草沙水库为例. 人民长江, 2012, 43 (12): 42- 45. |
4 | 周建军, 张曼. 近年长江中下游径流节律变化、效应与修复对策. 湖泊科学, 2018, 30 (6): 1471- 1488. |
5 | 娄保锋, 卓海华, 周正, 等. 近18年长江干流水质和污染物通量变化趋势分析. 环境科学研究, 2020, 33 (5): 1150- 1162. |
6 | 张昀哲, 李保. 长江口徐六泾断面近10年水质变化分析. 水利水电快报, 2019, 40 (10): 49- 53. |
7 | 董文逊, 张艳军, 王素描, 等. 长江干流水质变化趋势研究. 水资源研究, 2020, 9 (2): 150- 158. |
8 | 陈善荣, 何立环, 张凤英, 等. 2016—2019年长江流域水质时空分布特征. 环境科学研究, 2020, 33 (5): 1100- 1108. |
9 | 陈善荣, 何立环, 林兰钰, 等. 近40年来长江干流水质变化研究. 环境科学研究, 2020, 33 (5): 1119- 1128. |
10 | 范海梅, 蒋晓山, 纪焕红, 等. 长江口及其邻近海域生态环境综合评价. 生态学报, 2019, 39 (13): 4460- 4675. |
11 | 吴旭云, 裘诚, 王岳峰, 等. 上海海域海水水质变化趋势及应对措施. 海洋开发与管理, 2020, 37 (1): 46- 50. |
12 | 欧阳潇然, 赵巧华, 魏瀛珠. 基于FVCOM的太湖梅梁湾夏季水温、溶解氧模拟及其影响机制初探. 湖泊科学, 2013, 25 (4): 478- 488. |
13 | 胡裕滔, 周才杨, 虞铭卫. 长江徐六泾近6年水质变化趋势及其响应机制分析. 人民长江, 2019, 50 (11): 49- 55. |
14 | 周莉, 冯胜, 李忠玉, 等. 夏季太湖浊度分布特征及其在水-沉积物界面识别中的应用. 中国环境科学, 2015, (10): 230- 238. |
15 | 周建军, 张曼, 李哲. 长江上游水库改变干流磷通量、效应与修复对策. 湖泊科学, 2018, 30 (4): 865- 880. |
16 | 张立娟, 线薇薇, 刘素美. 长江口春季水体中磷空间分布特征及其影响因素. 海洋环境科学, 2010, 29 (5): 627- 630. |
17 | 王冰, 李利娟, 程伟娜, 等. 地表水中高锰酸盐指数、生化需氧量和化学需氧量的相关性分析研究. 环境科学与管理, 2016, 41 (4): 138- 140. |
18 | 韩淑新, 黄军, 张磊. 湖水位变化对洪泽湖水质变化规律的影响分析. 水电能源科学, 2015, 33 (1): 30- 33. |
/
〈 |
|
〉 |