生态与环境科学

崇明东滩围垦区不同土地利用类型对土壤呼吸及其组分的影响

  • 何晶 ,
  • 仲启铖 ,
  • 张桂莲 ,
  • 王开运 ,
  • 吴悦琦 ,
  • 贺贵书 ,
  • 李德志 ,
  • 彭娜娜
展开
  • 1. 华东师范大学 生态与环境科学学院, 上海 200241
    2. 上海市园林科学规划研究院, 上海 200232
    3. 上海自然博物馆(上海科技馆分馆), 上海 200041
    4. 华东师范大学 上海市城市化生态过程与生态恢复重点实验室, 上海 200241
    5. 崇明生态研究院, 上海 202162
    6. 自然资源部大都市区国土空间生态修复工程技术创新中心, 上海 200062

收稿日期: 2021-07-05

  录用日期: 2021-12-10

  网络出版日期: 2022-05-19

基金资助

国家自然科学基金青年基金 (31800411); 国家重点研发计划 (2017YFC0506002); 上海市自然科学基金 (17ZR1427400); 上海市科委科技创新行动计划“一带一路”青年科学家交流项目(19230742600); 自然资源部大都市区国土空间生态修复工程技术创新中心开放课题(CXZX2021B01, CXZX2021A04)

Soil respiration and its components across different land use types in the Dongtan reclamation area of Chongming Island

  • Jing HE ,
  • Qicheng ZHONG ,
  • Guilian ZHANG ,
  • Kaiyun WANG ,
  • Yueqi WU ,
  • Guishu HE ,
  • Dezhi LI ,
  • Nana PENG
Expand
  • 1. School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
    2. Shanghai Academy of Landscape Architecture Science and Planning, Shanghai 200232, China
    3. Shanghai Natural History Museum (Branch of Shanghai Science and Technology Museum), Shanghai 200041, China
    4. Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai 200241, China
    5. Institute of Eco-Chongming, Shanghai 202162, China
    6. Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Shanghai 200062, China

Received date: 2021-07-05

  Accepted date: 2021-12-10

  Online published: 2022-05-19

摘要

在崇明东滩围垦区, 采用Licor-8100A土壤碳通量观测系统及分层去根法, 连续测定5种土地利用类型 (芦苇湿地、白茅湿地、幼龄林、中龄林和农田) 的土壤呼吸、异养呼吸和自养呼吸, 以及0 ~ 10 cm表层土壤温度、体积含水率和电导率等环境因子, 系统地比较了崇明东滩围垦区不同用地类型土壤呼吸及其组分的差异. 结果表明: ① 幼龄林、中龄林和农田样地的土壤呼吸显著低于芦苇湿地和白茅湿地样地; ② 幼林龄、中林龄和农田样地的异养呼吸占比显著高于芦苇湿地和白茅湿地样地; ③ 土壤呼吸及其组分与土壤温度呈显著的指数关系, 但与土壤含水率和电导率的相关性较弱. 与残存湿地相比, 不同的农林利用方式显著降低了围垦区土壤呼吸, 但大幅增加了异养呼吸, 这可能说明土壤有机碳库在围垦20年后仍处于净损失状态. 因此, 需要采取有效措施进一步提升该区域土壤的碳固持能力.

本文引用格式

何晶 , 仲启铖 , 张桂莲 , 王开运 , 吴悦琦 , 贺贵书 , 李德志 , 彭娜娜 . 崇明东滩围垦区不同土地利用类型对土壤呼吸及其组分的影响[J]. 华东师范大学学报(自然科学版), 2022 , 2022(3) : 71 -81 . DOI: 10.3969/j.issn.1000-5641.2022.03.008

Abstract

In the Chongming Dongtan reclamation area, the soil carbon flux observation system (LI-8100A) and root removal method were used to continuously measure soil respiration (RS), heterotrophic respiration (RH), and autotrophic respiration (RA) of five land use types (Phragmites australis wetland, Imperata cylindrica wetland, young forest, middle-age forest, and cropland); the methods were also used to measure the soil temperature, volumetric water content, electrical conductivity, and other environmental factors in the 0-10 cm soil layer. In this study, the differences in soil respiration and its components among different land use types in the Chongming Dongtan reclamation area were systematically compared. The results showed that: ① RS in the young forest, middle-age forest, and cropland plot were significantly lower than those in the P. australis wetland and the I. cylindrica wetland plot; ② the proportion of RH found in the young forest, middle-age forest, and cropland was significantly higher than that observed in the P. australis wetland and the I. cylindrica wetland; ③ RS and its components showed a significant exponential relationship with soil temperature, but showed weak correlations with the soil volumetric water content and electrical conductivity. Compared with the residual wetlands, the different agroforestry utilization methods significantly reduced RS, but significantly increased RH, which may suggest that the soil organic carbon pool is still in a state of net loss after 20 years of reclamation. Thus, effective measures should be taken to improve the carbon sequestration capacity of the reclaimed soil in this area.

参考文献

1 BARBIER E B, HACKER S D, KENNEDY C, et al. The value of estuarine and coastal ecosystem services. Ecological Monographs, 2011, 81 (2): 169- 193.
2 GRIMSDITCH G, ALDER J, NAKAMURA T, et al. The blue carbon special edition – Introduction and overview. Ocean & Coastal Management, 2013, 83 (10): 1- 4.
3 CHMURA G L, ANISFELD S C, CAHOON D R, et al. Global carbon sequestration in tidal, saline wetland soils. Global Biogeochemical Cycles, 2003, 17 (4): 1111- 1123.
4 MCKNIGHT J Y, HARDEN C P, SCHAEFFER S M. Soil CO2 flux trends with differences in soil moisture among four types of land use in an Ecuadorian páramo landscape . Physical Geography, 2016, 38 (1): 1- 11.
5 SCHIMEL D S. Terrestrial ecosystems and the carbon cycle. Global Change Biology, 2010, 1 (1): 77- 91.
6 BOND-LAMBERTY B, THOMSON A. Temperature-associated increases in the global soil respiration record. Nature, 2010, 464 (7288): 579- 582.
7 SONG X, ZHU Y, CHEN W. Dynamics of the soil respiration response to soil reclamation in a coastal wetland. Scientific Reports, 2021, 11 (1): 2911.
8 FRANK A B, LIEBIG M A, TANAKA D L. Management effects on soil CO2 efflux in northern semiarid grassland and cropland . Soil & Tillage Research, 2006, 89 (1): 78- 85.
9 OUYANG W, LAI X, LI X, et al. Soil respiration and carbon loss relationship with temperature and land use conversion in freeze–thaw agricultural area. Science of The Total Environment, 2015, 533, 215- 222.
10 杨文佳, 李永夫, 姜培坤, 等. 亚热带毛竹人工林土壤呼吸组分动态变化及其影响因素. 应用生态学报, 2015, 26 (10): 2937- 2945.
11 RONG Y, MA L, JOHNSON D A, et al. Soil respiration patterns for four major land-use types of the agro-pastoral region of northern China. Agriculture Ecosystems & Environment, 2015, 213, 142- 150.
12 MANGALASSERY S, MOONEY S J, SPARKES D L, et al. Impacts of zero tillage on soil enzyme activities, microbial characteristics and organic matter functional chemistry in temperate soils. European Journal of Soil Biology, 2015, 68, 9- 17.
13 HU S, LI Y, CHANG S X, et al. Soil autotrophic and heterotrophic respiration respond differently to land-use change and variations in environmental factors[J]. Agricultural & Forest Meteorology, 2018, 250/251: 290-298.
14 WANG Y, HAO Y, CUI X Y, et al. Responses of soil respiration and its components to drought stress. Journal of Soils and Sediments, 2014, 14 (1): 99- 109.
15 蒙程, 牛书丽, 常文静, 等. 增温和刈割对高寒草甸土壤呼吸及其组分的影响. 生态学报, 2020, 40 (18): 6405- 6415.
16 ZHONG Q, WANG K, NIE M, et al. Responses of wetland soil carbon and nutrient pools and microbial activities after 7 years of experimental warming in the Yangtze Estuary. Ecological Engineering, 2019, 136, 68- 78.
17 许友. 浅谈人工林生长发育阶段划分. 民营科技, 2012, (11): 136.
18 刘立新, 董云社, 齐玉春, 等. 应用根去除法对内蒙古温带半干旱草原根系呼吸与土壤总呼吸的区分研究. 环境科学, 2007, 28 (4): 4689- 4694.
19 雷蕾, 肖文发, 曾立雄, 等. 马尾松林土壤呼吸组分对不同营林措施的响应. 生态学报, 2016, 36 (17): 5360- 5370.
20 BOONE R D, NADELHOFFER K J. Roots exert a strong influence on the temperature sensitivity of soil respiration. Nature, 1998, 368 (6711): 570- 572.
21 李愈哲, 樊江文, 胡中民, 等. 温性草原利用方式对生态系统碳交换及其组分的影响. 生态学报, 2018, 38 (22): 8194- 8204.
22 HUANG W, LIU J, HAN T, et al. Different plant covers change soil respiration and its sources in subtropics. Biology and Fertility of Soils, 2017, 53 (4): 469- 478.
23 ADACHI M, BEKKU Y S, WAN R, et al. Differences in soil respiration between different tropical ecosystems. Applied Soil Ecology, 2006, 34 (2-3): 258- 265.
24 ZHANG Q, WU J, YANG F, et al. Alterations in soil microbial community composition and biomass following agricultural land use change. Scientific Reports, 2016, 6 (1): 36587- 36587.
25 LEE J. Relationship of root biomass and soil respiration in a stand of deciduous broadleaved trees-a case study in a maple tree. Journal of Ecology and Environment, 2018, 42, 19.
26 YU X, ZHA T, ZHUO P, et al. Response of soil respiration to soil temperature and moisture in a 50-year-old oriental arborvitae plantation in China. PLoS ONE, 2011, 6 (12): e28397.
27 MATHEW E. DORNBUSH J W R. Soil temperature, not aboveground plant productivity, best predicts intra-annual variations of soil respiration in central Iowa grasslands. Ecosystems (New York), 2006, 9 (6): 909- 920.
28 RAICH J W, SCHLESINGER W H. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus, 1992, 44 (2): 81- 99.
29 WANG X, ZHUA B, GAO M, et al. Seasonal variations in soil respiration and temperature sensitivity under three land-use types in hilly areas of the Sichuan Basin. Australian Journal of Soil Research, 2008, 46 (8): 727- 734.
30 KARHU K, AUFFRET M D, DUNGAIT J, et al. Temperature sensitivity of soil respiration rates enhanced by microbial community response. Nature, 2014, 513 (7516): 81.
31 HOGBERG P, NORDGREN A, BUCHMANN N, et al. Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature, 2001, 411 (6839): 789- 792.
32 CHEN J, LUO Y, GARCíA PALACIOS P, et al. Differential responses of carbon-degrading enzyme activities to warming: Implications for soil respiration. Global Change Biology, 2018, 24 (10): 4816- 4826.
33 DAVIDSON E A, BELK E, BOONE R D. Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest. Global Change Biology, 2010, 4 (2): 217- 227.
34 HASBULLAH H, MARSCHNER P. Residue properties influence the impact of salinity on soil respiration. Biology and Fertility of Soils, 2015, 51 (1): 99- 111.
35 LAI L, ZHAO X, JIANG L, et al. Soil respiration in different agricultural and natural ecosystems in an arid region. PLoS ONE, 2012, 7 (10): e48011.
36 仲启铖, 关阅章, 刘倩, 等. 水位调控对崇明东滩围垦区滩涂湿地土壤呼吸的影响. 应用生态学报, 2013, 24 (8): 2141- 2150.
37 戚志伟, 姜楠, 高艳娜, 等. 崇明岛东滩湿地芦苇光合作用对土壤水盐因子的响应[J]. 湿地科学, 2016, 14(4): 538-545.
38 MURRAY N J, PHINN S R, DEWITT M, et al. The global distribution and trajectory of tidal flats. Nature, 2019, 565 (7738): 1.
39 HOLL K D, BRANCALION P. Tree planting is not a simple solution. Science, 2020, 368 (6491): 580- 581.
40 HE G, WANG K, ZHONG Q, et al. Agroforestry reclamations decreased the CO2 budget of a coastal wetland in the Yangtze estuary . Agricultural and Forest Meteorology, 2021, 296 (1): 16.
41 PAUL K I, POLGLASE P J, NYAKUENGAMA J G, et al. Change in soil carbon following afforestation. Forest Ecology & Management, 2002, 168 (1/2/3): 241- 257.
42 GUO L B, GIFFORD R M. Soil carbon stocks and land use change: a meta-analysis. Global Change Biology, 2010, 8 (4): 345- 360.
43 戚志伟, 高艳娜, 李沙沙, 等. 长江口滨海湿地芦苇和白茅形态和生长特征对地下水位的响应. 应用与环境生物学报, 2016, 22 (6): 986- 992.
44 王群超. 基于固碳效益的森林最优轮伐期的确定. 东北林业大学学报, 2011, (6): 98- 100.
45 林在坡. 低碳经济视角下农业生产的技术体系和模式选择. 农业与技术, 2015, 35 (24): 237.
46 熊继东, 成燕清. 低碳农业的重要技术——免耕栽培. 作物研究, 2010, 24 (4): 345- 347.
文章导航

/