Garfinkle-Horowitz-Strominger黑洞视界附近qubit-qutrit系统量子Fisher信息的保护
Protecting quantum Fisher information of a qubit-qutrit system near the horizon of the Garfinkle-Horowitz-Strominger dilation space-time
Received date: 2021-04-27
Online published: 2022-07-19
以Garfinkle-Horowitz-Strominger (GHS) 膨胀黑洞附近的qubit粒子和渐进平行时空下的qutrit粒子所组成的qubit-qutrit系统为研究对象, 讨论了该系统的量子Fisher信息(Quantum Fisher Information, QFI)在噪声环境下的动力学行为, 并基于弱测量和测量反转操作提出了噪声通道影响下量子Fisher 信息的保护方案. 结果表明, 对于振幅阻尼通道, 量子Fisher信息随着退相干强度的增加呈现单调递减的趋势; 然而对于相位阻尼通道, 量子Fisher信息却几乎不发生改变. 此外, 通过选取合适的弱测量强度和测量反转强度, 实现了振幅阻尼信道中量子Fisher信息的保护, 其量子Fisher信息可得到显著增强.
廉熠鋆 , 刘金明 . Garfinkle-Horowitz-Strominger黑洞视界附近qubit-qutrit系统量子Fisher信息的保护[J]. 华东师范大学学报(自然科学版), 2022 , 2022(4) : 120 -130 . DOI: 10.3969/j.issn.1000-5641.2022.04.012
In this study, we investigated the dynamic behavior of quantum Fisher information (QFI) for the qubit-qutrit system suffering from noisy environments by considering quantum memory; the qubit is located near the event horizon of the Garfinkle-Horowitz-Strominger (GHS) dilation black hole and the qutrit stays at the asymptotically flat region. We proposed an effective strategy to protect QFI under the influence of noise by employing weak measurement and reversal measurement. The results show that QFI decays as the amplitude damping strength increases; meanwhile, QFI is nearly constant with an increase in the phase damping strength. QFI can be improved with the selection of appropriate values for measurement strengths and reversal strengths.
1 | GIOVANNETTI V, LLOYD S, MACCONE L. Quantum-enhanced measurements: Beating the standard quantum limit. Science, 2004, 306 (5700): 1330- 1336. |
2 | GIOVANNETTI V, LLOYD S, MACCONE L. Quantum metrology. Physical Review Letters, 2006, 96 (1): 010401. |
3 | WILKINS A, SABIN C. Quantum estimation via parametric amplification in circuit-QED arrays. Physical Review A, 2015, 92 (6): 062102. |
4 | 杨志刚. 噪声环境下纠缠相干态的量子关联特性. 华东师范大学学报(自然科学版), 2016, (4): 111- 117. |
5 | YANG R Y, LIU J M. Enhancing the fidelity of remote state preparation by partial measurements. Quantum Information Processing, 2017, 16 (5): 125. |
6 | ALIPOUR S, MEHBOUDI M, REZAKHANI A T. Quantum metrology in open systems: dissipative Cramer-Rao bound. Physical Review Letters, 2014, 112 (12): 120405. |
7 | WATANABE Y, SAGAWA T, UEDA M. Optimal measurement on noisy quantum systems. Physical Review Letters, 2010, 4 (2): 020401. |
8 | ZHONG W, SUN Z, MA J, et al. Fisher information under decoherence in Bloch representation. Physical Review A, 2013, 87 (2): 022337. |
9 | CHEN X, CHAN K W C. Quantum teleportation of Dirac fields in noninertial frames with amplitude damping. Physical Review A, 2019, 99 (2): 022334. |
10 | SHI J D, DING Z Y, HE J, et al. Quantum distinguishability and geometric discord in the background of Schwarzschild space-time. Physica A, 2018, 510, 649- 657. |
11 | LIU C C, SHI J D, DING Z Y, et al. Quantum estimation for Dirac particles with the Hawking effect in the background of a Schwarzschild black hole. Laser Physics Letters, 2019, 16 (8): 085206. |
12 | GARFINKLE D, HOROWITZ G T, STROMINGER A. Charged black holes in string theory. Physical Review D, 1991, 43 (10): 3140- 3143. |
13 | MARTIN-MARTINEZ E, GARAY L J, LEON J. Unveiling quantum entanglement degradation near a Schwarzschild black hole. Physical Review D, 2010, 82 (6): 064006. |
14 | HE J, XU S, YE L. Measurement-induced-nonlocality for Dirac particles in Garfinkle-Horowitz-Strominger dilation space-time. Physics Letters B, 2016, 756, 278- 282. |
15 | LIU Y C, JIN G R, YOU L. Quantum-limited metrology in the presence of collisional dephasing. Physical Review A, 2010, 82 (4): 045601. |
16 | LI N, LUO S L. Entanglement detection via quantum Fisher information. Physical Review A, 2013, 88 (1): 014301. |
17 | HUANG Z M, WU D W, WANG T Q, et al. Steering entropic uncertainty of qutrit system. Modern Physics Letters A, 2020, 35 (16): 2050127. |
18 | WANG M J, XIA Y J, LI Y D, et al. Protecting qutrit-qutrit entanglement under decoherence via weak measurement and measurement reversal. International Journal of Theoretical Physics, 2020, 59 (12): 3696- 3704. |
19 | AARONSON B, LO F R, ADESSO G. Comparative investigation of the freezing phenomena for quantum correlations under nondissipative decoherence. Physical Review A, 2013, 88 (1): 012120. |
20 | ZHANG Z Y, LIU J M, HU Z F, et al. Entropic uncertainty relation for dirac particles in Garfinkle-Horowitz-Strominger dilation space-time. Annalen der Physik, 2018, 530 (11): 1800208. |
/
〈 |
|
〉 |