收稿日期: 2021-04-29
网络出版日期: 2022-07-19
Bell correlation of separated two-mode squeezed Bose-Einstein condensates
Received date: 2021-04-29
Online published: 2022-07-19
提出了一种检验两个空间分离玻色-爱因斯坦凝聚态(Bose-Einstein Condensate, BEC)贝尔关联的方法, 通过此方法可以观察到Clauser-Horne-Shimony-Holt (CHSH)贝尔不等式的违反. 介绍了制备空间分离BEC方法. 通过用粒子数算符的归一化期望值来计算相关因子, 进而检验贝尔关联. 发现, 当
关键词: 空间分离玻色-爱因斯坦凝聚态; 双模压缩; 贝尔不等式
孟鑫 , IVANNIKOVValentin , BYRNESTim . 分离双模压缩玻色-爱因斯坦凝聚态并检验其贝尔关联[J]. 华东师范大学学报(自然科学版), 2022 , 2022(4) : 131 -138 . DOI: 10.3969/j.issn.1000-5641.2022.04.013
In this paper, a method for testing the Bell correlation between two spatially separated two-mode squeezed Bose-Einstein condensates (BECs) is proposed. Using the referenced method, violation of the Clauser-Horne-Shimony-Holt (CHSH) Bell inequality can be observed. First, the method for producing the required physical states is introduced, and then the Bell correlation is tested by calculating the relevant factors using the normalized expected value of the particle number operator. It is shown that violation of the Bell inequality can be observed when
1 | WANG X L, CHEN L K, LI W, et al. Experimental ten-photon entanglement. Physical Review Letters, 2016, 117 (21): 210502. |
2 | FRIIS N, MARTY O, MAIER C, et al. Observation of entangled states of a fully controlled 20-qubit system. Physical Review X, 2018, 8 (2): 021012. |
3 | EINSTEIN A, PODOLSKY B, ROSEN N. Can quantum-mechanical description of physical reality be considered complete?. Physical Review, 1935, 47, 777-780. |
4 | BELL J S. On the Einstein-Podolsky-Rosen paradox. Physics, 1964, 1 (3): 195- 200. |
5 | BRUNNER N, CAVALCANTI D, PIRONIO S, et al. Bell nonlocality. Reviews of Modern Physics, 2014, 86(2), 419- 478. |
6 | CLAUSER J F, HORNE M A, SHIMONY A, et al. Proposed experiment to test local hidden-variable theories. Physical Review Letters, 1969, 23 (15): 880-884. |
7 | FREEDMAN S J, CLAUSER J F. Experimental test of local hidden-variable theories. Physical Review Letters, 1972, 28(14), 938- 941. |
8 | ASPECT A, DALIBARD J, ROGER G. Experimental test of Bell's inequalities using time-varying analyzers. Physical Review Letters, 1982, 49(25), 1804- 1807. |
9 | OU Z Y, MANDEL L. Violation of Bell’s inequality and classical probability in a two-photon correlation experiment. Physical Review Letters, 1988, 61(1), 50- 53. |
10 | MUNRO W J, REID M D. Violation of Bell’s inequality by macroscopic states generated via parametric down-conversion. Physical Review A, 1993, 47 (5): 4412-4421. |
11 | HORODECKI R, HORODECKI P, HORODECKI M, et al. Quantum entanglement. Reviews of Modern Physics, 2009, 81, 865- 942. |
12 | CHANG M S, HAMLEY C D, BARRETT M D, et al. Observation of spinor dynamics in optically trapped 87Rb Bose-Einstein condensates . Physical Review Letters, 2004, 92(14), 140403. |
13 | KLEMPT C, GEBREYESUS G, SCHERER M, et al. Parametric amplification of vacuum fluctuations in a spinor condensate. Physical Review Letters, 2010, 104 (19): 195303. |
14 | PEISE J, KRUSE I, LANGE K, et al. Satisfying the Einstein-Podolsky-Rosen criterion with massive particles [J]. Nature Communications, 2015(6): 8984. DOI: 10.1038/ncomms9984. |
15 | LüCKE B, SCHERER M, KRUSE J, et al. Twin matter waves for interferometry beyond the classical limit. Science, 2011, 334 (6057): 773- 776. |
16 | LANGE K, PEISE J, LüCKE B, et al. Entanglement between two spatially separated atomic modes. Science, 2018, 360 (6387): 416- 418. |
17 | WALLS D F, MILBURN G J. Quantum Optics [M]. Berlin: Springer, 1994. |
18 | GERRY C, KNIGHT P. Introductory Quantum Optics [M]. Cambridge: Cambridge University Press, 2004. |
19 | CARMICHAEL H J. Statistical Methods in Quantum Optics 1 [M]. Berlin: Springer, 1999. |
20 | SCULLY M O, ZUBAIRY M S. Quantum Optics [M]. [S.l.]: American Association of Physics Teachers, 1999. |
21 | OUDOT E, BANCAL J-D, SCHMIED R, et al. Optimal entanglement witnesses in a split spin-squeezed Bose-Einstein condensate. Physical Review A, 2017, 95 (5): 052347. |
22 | JING Y, FADEL M, IVANNIKOV V, et al. Split spin-squeezed Bose-Einstein condensates. New Journal of Physics, 2019, 21 (9): 093038. |
23 | BYRNES T, ILO-OKEKE E O. Quantum atom optics: Theory and applications to quantum technology[EB/OL]. (2020-10-28)[2021-04-04]. https://doi.org/10.48550/arXiv.2007.14601. |
24 | PEZZè L, SMERZI A, OBERTHALER M K, et al. Quantum metrology with nonclassical states of atomic ensembles. Reviews of Modern Physics, 2018, 90(3), 035005. |
25 | BRAUNSTEIN S L, VAN LOOCK P. Quantum information with continuous variables. Reviews of Modern Physics, 2005, 77 (2): 513- 577. |
26 | RALPH T C, MUNRO W J, POLKINGHORNE R E S. Proposal for the measurement of Bell-type correlations from continuous variables. Physical Review Letters, 2000, 85(10), 2035- 2039. |
27 | KITZINGER J, CHAUDHARY M, KONDAPPAN M, et al. Two-axis two-spin squeezed states. Physical Review Research, 2020, 2(3), 033504. |
28 | MUNRO W J, REID M D. Violation of Bell’s inequality by macroscopic states generated via parametric down-conversion. Physical Review A, 1993, 47(5), 4412- 4421. |
29 | BARNETT S M, PHILLIPS L S, PEGG D T. Imperfect photodetection as projection onto mixed states. Optics Communications, 1998, 158 (1/2/3/4/5/6): 45- 49. |
/
〈 |
|
〉 |