物理学与电子学

光-原子混合干涉实现加速度测量

  • 方波 ,
  • 于志飞 ,
  • 陈丽清
展开
  • 华东师范大学 物理与电子科学学院, 上海 200241

收稿日期: 2021-05-07

  网络出版日期: 2022-07-19

基金资助

国家自然科学基金 (11874152)

Atom-light hybrid interference to achieve acceleration measurement

  • Bo FANG ,
  • Zhifei YU ,
  • Liqing CHEN
Expand
  • School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China

Received date: 2021-05-07

  Online published: 2022-07-19

摘要

基于光-原子混合干涉仪构建了一种新型的光-原子相位自锁定的加速度计. 虽然在目前所有加速度计中, 全光类型的加速度计由于其体积小、精度高, 成为了最常用且也是最稳定的加速度计; 但由于其测量带宽受到的限制, 所以极大地限制了其使用的范围. 基于此, 设计了一种新型的光-原子加速度计(Atom-Light Accelerometer, ALA). 该加速度计的特点: 首先, 在原子系统中通过受激拉曼散射(Stimulated Raman Scattering, SRS)过程构成光-原子混合干涉仪; 其次, 由反射镜构成加速度计的弹性质量块, 在实验平台上, 当质量块受到一个加速度作用时, 就会接收到外界带来的位移的变化, 从而将相位的变化引入到干涉仪中; 最后, 通过干涉条纹的变化, 即可感知到引入相位的大小, 继而推出位移的变化量, 因此也就获得了加速度的大小. 该加速度计的优点: SRS过程中产生的斯托克斯光场和对应产生的原子自旋波相位是相互关联的, 从而保障了装置中相位的稳定性; 该装置简单, 测量范围可调, 增加了其适用的范围; 同时, 理想情况下, 其精度能超越标准量子极限(Standard Quantum Limit, SQL).

本文引用格式

方波 , 于志飞 , 陈丽清 . 光-原子混合干涉实现加速度测量[J]. 华东师范大学学报(自然科学版), 2022 , 2022(4) : 139 -146 . DOI: 10.3969/j.issn.1000-5641.2022.04.014

Abstract

In this paper, we present a new type of atom-light accelerometer (ALA) based on use of an atom-light hybrid interferometer. At present, all-optical accelerometers are the most commonly used and most stable accelerometers on the market, owing to their small size and high accuracy. However, due to measurement bandwidth limitations, their practical application range is limited. Hence, we designed a new type of accelerometer to address this challenge. The atom-light hybrid interferometer is first constructed in the atomic system through the stimulated Raman scattering (SRS) process, and the elastic mass of the accelerometer is formed by a mirror. When the mass is subjected to acceleration on the experimental platform, it will perceive the change in external displacement, thereby introducing the phase into the interferometer. Through the change of the interference fringe, the change of the external phase and the displacement can be determined; hence, the magnitude of the acceleration can be obtained. The primary advantage of the atom-light accelerometer is that the Stokes field generated by the SRS process is phase related to the atomic spin-wave, which ensures the stability of the device phase. Secondly, the adjustable bandwidth of the device increases its scope of application. Finally, theoretical calculations show that its measurement accuracy exceeds the standard quantum limit (SQL) under ideal conditions.

参考文献

1 TAN C W, PARK S. Design of accelerometer based inertial navigation systems. IEEE Transactions on Instrumentation and Measurement, 2005, 54 (6): 2520- 2530.
2 JIANG D S, ZHANG W T, LI F, et al. All-metal optical fiber accelerometer with low transverse sensitivity for seismic monitoring. IEEE Sensors Journal, 2013, 13 (11): 4556- 4560.
3 LAGAKOS N, LITOVITZ T, MACEDO P, et al. Multimode optical fiber displacement sensor. Applied Optics, 1981, 20 (2): 167- 168.
4 KRAUSE A G, WINGER M, BLASIUS T D, et al. A high-resolution microchip optomechanical accelerometer. Nature Photonics, 2012, 6 (11): 768- 772.
5 LI Y L, BARKER P F. Characterization and testing of a micro-g whispering gallery mode optomechanical accelerometer [J]. Journal of Lightwave Technology, 2018, 36(18): 3919-3926.
6 CHEN B, QIU C, CHEN S Y, et al. Atom-light hybrid interferometer. Physical Review Letters, 2015, 115 (4): 043602.
7 CHEN Z D, YUAN C H, MA H M, et al. Effects of losses in the atom-light hybrid SU(1, 1) interferometer. Optics Express, 2016, 24 (16): 17766- 17778.
8 LAHAYE M D, BUU O, CAMAROTA B. Approaching the quantum limit of a nanomechanical resonator [J]. Science, 2004, 304(5667): 74-77.
9 DOWLING J P. Quantum optical metrology–the lowdown on high-N00N states. Contemporary Physics, 2008, 49 (2): 125- 143.
10 WU S H, HUANG W F, YANG P Y, et al. Arbitrary phase-locking in Mach–Zehnder interferometer. Optics Communications, 2019, 442, 148- 151.
文章导航

/