物理学与电子学

量子点超晶格激子系综中的超荧光行为

  • 谭继清 ,
  • 王强强 ,
  • 谢微
展开
  • 华东师范大学 物理与电子科学学院, 上海 200241

收稿日期: 2021-05-19

  录用日期: 2021-12-30

  网络出版日期: 2022-07-19

Superfluorescence behavior of excitons in a quantum dot superlattice

  • Jiqing TAN ,
  • Qiangqiang WANG ,
  • Wei XIE
Expand
  • School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China

Received date: 2021-05-19

  Accepted date: 2021-12-30

  Online published: 2022-07-19

摘要

在10 K温度下, 利用时间分辨荧光收集系统, 研究了钙钛矿量子点超晶格单光子和双光子的荧光发光光谱及激子动力学特征. 单光子过程表现出典型的超荧光特征: 随着泵浦功率的增加, 峰值强度非线性增加, 辐射寿命迅速减小. 同时, 双光子吸收荧光光谱强度呈现二次非线性增加, 激子动力学过程与单光子过程呈现出相同特征. 这证明, 激发密度达到一定强度时, 双光子吸收也可以诱导超荧光过程.

本文引用格式

谭继清 , 王强强 , 谢微 . 量子点超晶格激子系综中的超荧光行为[J]. 华东师范大学学报(自然科学版), 2022 , 2022(4) : 163 -168 . DOI: 10.3969/j.issn.1000-5641.2022.04.017

Abstract

In this study, photoluminescence spectra are studied in perovskite quantum dot superlattices based on two-photon absorption processes at 10 K. The dynamics of excitons is obtained using a time-resolved photoluminescence detection system. The sample exhibits typical superfluorescence characteristics in the single-photon excitation case: When the pumping power increases, the transient peak intensity increases nonlinearly, and the radiation lifetime decreases rapidly. Meanwhile, the intensities of the two-photon absorption fluorescence spectra are proportional to the square of the excitation power, and the dynamics of excitons under the two-photon absorption case exhibits the same characteristics as those in the single-photon excitation case. Thus, when the excitation density reaches a certain intensity, two-photon absorption can also induce a superfluorescence process.

参考文献

1 DICKE R H. Coherence in spontaneous radiation processes. Physical Reviews, 1954, 93, 99- 110.
2 BONIFACIO R, LUGIATO L A. Cooperative radiation processes in two-level systems: Superfluorescence. Physical Review A, 1975, (11): 1507- 1521.
3 AKKERMANS E, GERO A, KAISER R. Photon localization and Dicke superradiance in atomic gases. Physical Review Letters, 2008, 101 (10): 103602.
4 SKRIBANOWITZ N, HERMAN I P, MACGILLIVRAY J C, et al. Observation of Dicke superradiance in optically pumped HF gas. Physical Review Letters, 1973, 30 (8): 309- 312.
5 BRADAC C, JOHNSSON M T, VAN BREUGEL M, et al. Room-temperature spontaneous superradiance from single diamond nanocrystals. Nature Communications, 2017, (8): 1205.
6 ANGERER A, STRELTSOV K, ASTNER T, et al. Superradiant emission from colour centres in diamond. Nature Physics, 2018, 14 (12): 1168- 1172.
7 SCHEIBNER M, SCHMIDT T, WORSCHECH L, et al. Superradiance of quantum dots. Nature Physics, 2007, 3 (2): 106- 110.
8 JAHNKE F, GIES C, AΒMANN M, et al. Giant photon bunching, superradiant pulse emission and excitation trapping in quantum-dot nanolasers [J]. Nature Communications, 2016(7): 11540.
9 PROTESESCU L, YAKUNIN S, BODNARCHUK M I, et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X= Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut . Nano letters, 2015, 15 (6): 3692- 3696.
10 RAINò G, BECKER M A, BODNARCHUK M I. et al. Superfluorescence from lead halide perovskite quantum dot superlattices. Nature, 2018, 563 (7733): 671- 675.
11 ZHOU C, ZHONG Y C, DONG H X, et al. Cooperative excitonic quantum ensemble in perovskite-assembly superlattice microcavities. Nature Communications, 2020, 11 (1): 329.
12 G?PPERT-MAYER M. über Elementarakte mit zwei Quantensprüngen. Annals of Physics, 1931, 401, 273- 294.
13 KAISER W, GARRETT C G B. Two-photon excitation in CaF2: Eu2 +. Physical Review Letters, 1961, (7): 229- 232.
14 BRAY R G, HOCHSTRASSER R M. Two-photon absorption by rotating diatomic molecules [J]. Molecular Physics, 1976, 31(4): 1199-1211.
15 BRUNNER K, ABSTREITER G, BOHM G, et al. Sharp-line photoluminescence and two-photon absorption of zero-dimensional biexcitons in a GaAs/AlGaAs structure [J]. Physical Review Letters, 1994, 73(8): 1138-1141.
16 DROBIZHEV M, MAKAROV N S, TILLO S E, et al. Two-photon absorption properties of fluorescent proteins. Nature methods, 2011, 8 (5): 393- 399.
17 LARSON D R, ZIPFEL W R, WILLIAMS R M, et al. Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science, 2003, 300 (5624): 1434- 1436.
18 VOURA E B, JAISWAL J K, MATTOUSSI H, et al. Tracking metastatic tumor cell extravasation with quantum dot nanocrystals and fluorescence emission-scanning microscopy [J]. Nature Medicine, 2004, 10(9): 993–998.
19 STROH M, ZIMMER J P, DUDA D G, et al. Quantum dots spectrally distinguish multiple species within the tumor milieu in vivo. Nature Medicine, 2005, 11 (6): 678- 682.
20 WANG Y, LI X M, ZHAO X, et al. Nonlinear absorption and low-threshold multiphoton pumped stimulated emission from all-inorganic perovskite nanocrystals. Nano Letters, 2016, 16, 448- 453.
21 CHEN J S, Z?íDEK K, CHáBERA P, et al. Size- and wavelength-dependent two-photon absorption cross-section of CsPbBr3 perovskite quantum dots . The Journal of Physical Chemistry Letters, 2017, (8): 2316- 2321.
22 XU Y Q, CHEN Q, ZHANG, C F, et al. Two-photon-pumped perovskite semiconductor nanocrystal lasers. Journal of the American Chemical Society, 2016, 138, 3761- 3768.
23 NAGAMINE G, ROCHA J O, BONATO L G, et al. Two-photon absorption and two-photon-induced gain in perovskite quantum dots. The Journal of Physical Chemistry Letters, 2018, (9): 3478- 3484.
24 GROSS M, HAROCHE S. Superradiance: An essay on the theory of collective spontaneous emission. Physics Reports, 1982, 93 (5): 301- 396.
文章导航

/