计算机科学

面向野外战场环境的道路建模仿真技术

  • 陆书成 ,
  • 高岩 ,
  • 王长波
展开
  • 华东师范大学 计算机科学与技术学院, 上海 200062

收稿日期: 2021-05-14

  网络出版日期: 2022-07-19

基金资助

国家自然科学基金(62072183, 62002121)

Modeling and simulation technology of roads for a battlefield environment

  • Shucheng LU ,
  • Yan GAO ,
  • Changbo WANG
Expand
  • School of Computer Science and Technology, East China Normal University, Shanghai 200062, China

Received date: 2021-05-14

  Online published: 2022-07-19

摘要

野外战场环境是一个包含地形和道路等地理要素的作战空间, 道路是其中的重要组成部分, 对复杂的作战决策起着关键作用. 传统道路建模无法处理野外复杂的地形条件. 提出了面向野外战场环境的道路建模仿真方法. 该方法将道路网络根据其特点划分为不同的子模型并分别建模, 以满足战场模拟中真实感的需求; 采用OpenStreetMap来驱动道路网络建模, 具有实时性强、准确性高、道路信息结构清晰、分类齐全等特点, 能够满足野外战场环境军事作战和建模仿真的需要; 利用地形高程数据和道路建设规则等辅助信息, 对道路高度进行了调整, 以适应野外战场复杂的地形条件和可能存在的多层级路网结构; 引入了曲率连续( $ {G}^{2} $ 连续的) Hermite插值样条曲线, 灵活地对道路中心线进行了表示, 并通过网格变形提高了道路模型的复用性. 实验表明, 该仿真方法可较完整地还原路网的真实细节, 有效地贴合复杂地形并提高了道路模型的复用性, 为研究野外战场环境中的地理要素提供了可行的分析角度和建模方法.

本文引用格式

陆书成 , 高岩 , 王长波 . 面向野外战场环境的道路建模仿真技术[J]. 华东师范大学学报(自然科学版), 2022 , 2022(4) : 79 -94 . DOI: 10.3969/j.issn.1000-5641.2022.04.008

Abstract

Battlefield environments are combat spaces that contain geographic elements such as terrain and roads. Road modeling and simulation is an important part of battlefield simulation and plays a key role in complex combat decision-making. Traditional road modeling is unable to handle the complex terrain conditions present in the field; hence, this paper proposes road modeling and simulation method for field environments. In particular, in order to support road modeling and simulation of complex terrain environments, road construction designs oriented to typical battlefield environments are proposed. This method divides the road network into different sub-models according to their characteristics and models them separately, improving the demand for realism in battlefield simulation. Then, the proposed method uses OpenStreetMap geographic information data to drive road network construction. The model offers real-time, high accuracy road information content and complete classification that can meet the needs of military operations and modeling simulations for typical battlefield environments. Secondly, using terrain elevation data, road construction rules, and other auxiliary information, the road height is adjusted to adapt to the complex terrain conditions of the battlefield and possible multi-level road network structures. Lastly, the introduction of a $ {G}^{2} $ continuous Hermite interpolation spline can flexibly represent the center line of the road and improves the reusability of the road model through grid deformation. Experiments show that the proposed simulation method can more reliably restore the real details of a road network to effectively fit complex terrain and improve the reusability of road models. Finally, it provides a feasible analysis angle and modeling method for researching geographic elements in battlefield environments.

参考文献

1 朱星平. 利用地下空间构建城市战场环境研究 [J]. 国防, 2019(3): 82-84.
2 PARISH Y I H, MüLLER P. Procedural modeling of cities [C]// Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques. 2001: 301-308.
3 KIM S, KIM D, CHOI S. CityCraft: 3D virtual city creation from a single image. The Visual Computer, 2020, 36 (5): 911- 924.
4 LI W, NIE D, WILKIE D, et al. Citywide estimation of traffic dynamics via sparse GPS traces. IEEE Intelligent Transportation Systems Magazine, 2017, 9 (3): 100- 113.
5 KELVIN L Z, ANAND B. Procedural generation of roads with conditional generative adversarial networks [C]// 2020 IEEE 6th International Conference on Multimedia Big Data (BigMM). IEEE, 2020: 277-281.
6 丁思磊, 陈云, 张波. 基于OpenStreetMap数据的交通要素处理. 测绘与空间地理信息, 1996, 4 (3): 113- 129.
7 YANG Q, KOUTSOPOULOS H N. A microscopic traffic simulator for evaluation of dynamic traffic management systems [J]. Transportation Research Part C: Emerging Technologies, 1996, 4(3): 113-129.
8 WANG H, WU Y, HAN X, et al. Automatic generation of large-scale 3D road networks based on GIS data. Computers and Graphics, 2021, 96, 71- 81.
9 AMARA Y, AMAMRA A, KHEMIS S. Raw GIS to 3D road modeling for real-time traffic simulation. The Visual Computer, 2022, 38:239- 256. DOI:10.1007/s00371-020-02013-1.
10 ZHANG X Q, ZHONG M, LIU S B, et al. Template-based 3D road modeling for generating large-scale virtual road network environment. International Journal of Geo-Information, 2019, (8): 364. DOI:10.3390/ijgi8090364.
11 AMARA Y, AMAMRA A, DAHEUR Y, et al. A GIS data realistic road generation approach for traffic simulation [C]// 2019 Federated Conference on Computer Science and Information Systems (FedCSIS). IEEE, 2019: 385-390.
12 SCHMITT P S, WIRNSHOFER F, WURM K M, et al. Modeling and planning manipulation in dynamic environments [C]// 2019 International Conference on Robotics and Automation (ICRA). IEEE, 2019: 176-182.
13 BOUCHER C, NOYER J C. A general framework for 3-D Parameters estimation of roads using GPS, OSM and DEM data [J]. Sensors, 2017, 18(1): 41. DOI:10.3390/s18010041.
14 CURA R, PERRET J, PAPARODITIS N. Streetgen: In base city scale procedural generation of streets: road network, road surface and street objects [EB/OL]. (2018-01-1)[2021-04-27]. https://arxiv.org/abs/1801.05741.
15 王华, 何晓宇. 支持动态编辑的交通路网语义建模方法 [J]. 图学学报, 2019, 40(5): 858-865.
16 周炤, 李少梅, 杨佳. Web墨卡托投影及其性质分析 [J]. 测绘科学技术学报, 2021, 38(1): 71-74, 82.
17 ?AVRI? B, PATTERSON T, JENNY B. The equal earth map projection. International Journal of Geographical Information Science, 2019, 33 (3): 454- 465.
18 WIEDEMANN C, HINZ C, MAYER H, et al. Automatic extraction and evaluation of road networks from MOMS-2P imagery [J]. International Archives of Photogrammetr and Remote Sensing, 1998, 32: 285–291.
19 WIEDEMANN C. External evaluation of road networks [J]. International Archives of Photogrammetry Remote Sensing and Spatial Information Sciences, 2003, 34(3/W8): 93–98.
20 YU X. OSM-based automatic road network geometries generation on unity [D]. Stockholm: KTH Royal Tnstitute of Technology, 2019.
文章导航

/