区块链系统与数据管理

化工材料配方的实验数据治理模块设计

  • 郁毅明 ,
  • 洪语晨 ,
  • 王晔 ,
  • 董启文
展开
  • 华东师范大学 数据科学与工程学院, 上海 200062

收稿日期: 2022-07-20

  录用日期: 2022-07-21

  网络出版日期: 2022-09-26

Design of experimental data governance module for chemical material formulation

  • Yiming YU ,
  • Yuchen HONG ,
  • Ye WANG ,
  • Qiwen DONG
Expand
  • School of Data Science and Engineering, East China Normal University, Shanghai 200062, China

Received date: 2022-07-20

  Accepted date: 2022-07-21

  Online published: 2022-09-26

摘要

当前, 数据要素是新型的生产要素, 对数据进行有效治理和管控将成为企业发展的关键. 作为国民经济生产的重要组成部分, 化工材料行业需要根据自身建设的需求对数据信息化系统进行升级. 因此, 针对化工材料行业中如何治理实验配方数据提出了一套量身定制的数据治理模块. 首先, 该数据治理模块根据企业当前业务场景提出相应的数据标准和规范, 系统从前端获取数据, 经过质量提升并存储到数据库; 然后, 又从后端进行数据价值评估返回前端到展示, 形成了一个闭环负反馈的系统.

本文引用格式

郁毅明 , 洪语晨 , 王晔 , 董启文 . 化工材料配方的实验数据治理模块设计[J]. 华东师范大学学报(自然科学版), 2022 , 2022(5) : 1 -13 . DOI: 10.3969/j.issn.1000-5641.2022.05.001

Abstract

As a new type of production factor, data elements are becoming key to enterprise development. As an important component of national economic production, the chemical material industry must upgrade their data information system according to the needs of its construction. In this regard, a tailored data governance module is proposed for managing experimental formula data in the chemical material industry. The data governance module proposes the use of corresponding data standards and specifications according to the current business scenario of the enterprise. The system obtains data from the front end, improves its quality, stores it in a database, evaluates the data from the back end, and finally returns it to the front end for display, thereby creating a closed-loop negative feedback system.

参考文献

1 李凌云. 化工行业数字化转型实践及对企业的影响. 河南化工, 2020, 37 (9): 66- 68.
2 李世鹏, 黄金龙, 李波, 等. 固体火箭发动机推进剂性能数据库的开发 [C]// 中国宇航学会固体火箭推进第22届年会论文集. 2005: 253-255.
3 刘冰, 庞琳. 国内外大数据质量研究述评. 情报学报, 2019, 38 (2): 217- 226.
4 杨琳, 高洪美, 宋俊典, 等. 大数据环境下的数据治理框架研究及应用. 计算机应用与软件, 2017, 34 (4): 65- 69.
5 LIU D, WANG J, RAJAKANI K. Upgrading of IOT big data governance scheme in microenterprise governance. Wireless Communications and Mobile Computing, 2022, 2022.
6 吴信东, 董丙冰, 堵新政, 等. 数据治理技术. 软件学报, 2019, 30 (9): 2830- 2856.
7 AL-BADI A, TARHINI A, KHAN A I. Exploring big data governance frameworks. Procedia Computer Science, 2018, 141, 271- 277.
8 杨东华, 李宁宁, 王宏志. 基于任务合并的并行大数据清洗过程优化. 计算机学报, 2016, 39 (1): 97- 108.
9 IBM Data Governance Council. IBM data governance council maturity model: Building a roadmap for coffecttive data governance [EB/OL]. (2007-10-01)[2022-07-10]. https://scribd.com/doc/294669999/IBM-Data-Governance-Council-Maturity-Model.
10 DGI. DGI data governance framework [EB/OL]. (2009-01-01)[2022-07-10]. http://datagovernance.com.
11 OGIER A, HALL M, BAILEY A. Data management inside the library: Assessing electronic resources data using the data asset framework methodology. Journal of Electronic Resources Librarianship, 2014, 26 (2): 101- 113.
12 韩京宇, 徐立臻, 董逸生. 数据质量研究综述. 计算机科学, 2008, (2): 1- 5.
13 李谦, 白晓明, 张林, 等. 供电企业数据资产管理与数据化运营. 华东电力, 2014, 42 (3): 487- 490.
14 巨克真, 魏珍珍. 电力企业级数据治理体系的研究. 电力信息与通信技术, 2014, 12 (1): 7- 11.
文章导航

/