收稿日期: 2022-01-20
录用日期: 2022-04-25
网络出版日期: 2022-11-22
基金资助
国家自然科学基金 (42076170, U2240220); 自然资源部海岸带科学与综合管理重点实验室开放基金 (2021COSIMZ001); 上海市教育委员会科研创新计划项目 (2019-01-07-00-05-E00027)
Study on sediment stability between vegetation and bare flats in a muddy intertidal flat: A case study for Chongming Dongtan in the Yangtze River Estuary
Received date: 2022-01-20
Accepted date: 2022-04-25
Online published: 2022-11-22
以典型淤泥质潮间带—长江口崇明东滩为例, 通过现场采样和室内实验, 对盐沼植被-光滩中沉积物的稳定性进行对比分析. 结果表明: ① 在光滩区域, 随着黏土含量的增加, 沉积物稳定性增强. ② 受植被根系“加筋”作用, 盐沼植被带沉积物稳定性明显高于光滩. ③ 同一类型植被带的沉积物稳定性由地下生物量决定, 地下生物量越高, 沉积物越稳定; 不同类型植被带的沉积物稳定性由植被根系特征决定, 与具有较细根系的海三棱镳草相比, 较粗根系的互花米草植被带内沉积物稳定性差. 本研究结果不仅丰富了潮间带沉积物稳定性研究理论, 而且还可为绿色海堤建设、海岸绿色防护措施制定提供科学依据.
张莹鑫 , 张文祥 , 史本伟 , 汪亚平 . 淤泥质潮间带植被-光滩沉积物稳定性研究—以长江口崇明东滩为例[J]. 华东师范大学学报(自然科学版), 2022 , 2022(6) : 169 -177 . DOI: 10.3969/j.issn.1000-5641.2023.03.017
With the present global warming scenario, the erosion of intertidal flats in estuarine zones often occurs due to rising sea levels and an increase in human activities. Intertidal flats have an important ecological function and economic value, including for carbon sequestration, preventing flooding, water purification, attenuating waves, and tourism development. Hence, it is of great theoretical and practical significance to study the stability of the wetland ecosystem for intertidal flats. Previous studies mainly focused on the stability of intertidal bare flats, while the stability of salt marsh ecosystems has attracted relatively less attention. The mechanisms of their respective influencing factors are, as of yet, poorly understood. In this study, we took a typical muddy intertidal zone of Chongming Dongtan in the Yangtze River Estuary as an example and made a comparative analysis on sediment stability for both the salt marsh zone and the adjacent bare flat using in-situ sampling and laboratory tests. The results indicate that: ① Sediment stability improves with an increase of clay content in the bare flat. ② Sediment stability in the salt marsh zone is significantly higher than that in the adjacent bare flat because of the “reinforcing” effect of the root system. ③ Underground biomass determines sediment stability for the same type of vegetation. The sediment becomes more stable with an increase of the underground biomass in vegetation. The sediment stability of different vegetation is determined by characteristics of the vegetation root system. The sediment stability of Spartina alterniflora vegetation zone with coarser roots was worse than that of Scirpus mariqueter with finer roots. Our results not only advance theoretical research on sediment stability in intertidal flats, but also provide scientific guidance for the construction of Green Sea Defence and other coastal green protection measures.
1 | FOSTER N M, HUDSON M D, BRAY S, et al. Intertidal mudflat and saltmarsh conservation and sustainable use in the UK: A review. Journal of Environmental Management, 2013, 126 (4): 96- 104. |
2 | 陈思明. 粉砂淤泥质潮滩表层沉积物侵蚀特性探讨 [D]. 上海: 华东师范大学, 2018. |
3 | 杨世伦. 海岸环境和地貌过程导论 [M]. 北京: 海洋出版社, 2003: 1-2. |
4 | 时钟, 陈吉余, 虞志英. 中国淤泥质潮滩沉积研究的进展. 地球科学进展, 1996, 11 (6): 37- 44. |
5 | FAGHERAZZI S, CARNIELLO L, D’ALPAOS L, et al. Critical bifurcation of shallow microtidal landforms in tidal flats and salt marshes. Proceedings of the National Academy of Sciences, 2006, 103 (22): 8337- 8341. |
6 | 童春富. 长江河口潮间带盐沼植被分布区及邻近光滩鱼类组成特征. 生态学报, 2012, 32 (20): 6501- 6510. |
7 | KIRWAN M L, MEGONIGAL J P. Tidal wetland stability in the face of human impacts and sea-level rise. Nature, 2013, 504 (7478): 53- 60. |
8 | 姜翠玲, 谢向前. 三沙湾滩涂的生态服务功能价值评估 [C]//任立良. 环境变化与水安全——第五届中国水论坛论文集. 南京: 中国水利水电出版社, 2007: 326-329. |
9 | 任璘婧, 李秀珍, 杨世伦, 等. 崇明东滩盐沼植被变化对滩涂湿地促淤消浪功能的影响. 生态学报, 2014, 34 (12): 3350- 3358. |
10 | MARENAREN D, YANG S L, HE Q. The impact of silt trapping in large reservoirs on downstream morphology: The Yangtze River. Ocean Dynamics, 2013, 63 (6): 691- 707. |
11 | LI G, ZHUANG K, WEI H. Sedimentation in the Yellow River delta Part Ⅲ: Seabed erosion and diapirism in the abandoned subaqueous delta lobe. Marine Geology, 2000, 168 (1/2/3/4): 129- 144. |
12 | MURRAY N J, PHINN S R, DEWITT M, et al. The global distribution and trajectory of tidal flats. Nature, 2019, 565 (7738): 222- 225. |
13 | HOWES N C, FITZGERALD D M, HUGHES Z J, et al. Hurricane-induced failure of low salinity wetlands. Proceedings of the National Academy of Sciences, 2010, 107 (32): 14014- 14019. |
14 | 林峰竹, 王慧, 张建立, 等. 中国沿海海岸侵蚀与海平面上升探析. 海洋开发与管理, 2015, 32 (6): 16- 21. |
15 | 朱文谨, 王娜, 赵其灏, 等. 1984—2019年江苏中部淤泥质海岸线淤蚀变化特征分析. 江苏海洋大学学报(自然科学版), 2020, 29 (2): 58- 63. |
16 | GRABOWSKI R C, DROPPO I G, WHARTON G. Erodibility of cohesive sediment: The importance of sediment properties. Earth Science Reviews, 2011, 105 (3/4): 101- 120. |
17 | HOUWING E J. Determination of the critical erosion threshold of cohesive sediments on intertidal mudflats along the Dutch Wadden Sea Coast. Estuarine Coastal & Shelf Science, 1999, 49 (4): 545- 555. |
18 | BALE A J, WIDDOWS J, HARRIS C B, et al. Measurements of the critical erosion threshold of surface sediments along the Tamar Estuary using a mini-annular flume. Continental Shelf Research, 2006, 26 (10): 1206- 1216. |
19 | TAKI K. Critical shear stress for cohesive sediment transport. Proceedings in Marine Science, 2001, 3 (6): 53- 61. |
20 | 时钟. 河口海岸细颗粒泥沙物理过程 [M]. 上海: 上海交通大学出版社, 2013: 334. |
21 | 宋敬泰. 黄河三角洲岸滩沉积物临界侵蚀剪应力研究 [D]. 山东 青岛: 中国海洋大学, 2009. |
22 | WANG Y B. Effects of physical properties and rheological characteristics on critical shear stress of fine sediments [D]. Atlanta: Georgia Institute of Technology, 2013. |
23 | 陈思明, 王宪业, 孙健伟, 等. 粉砂淤泥质潮滩表层沉积物可侵蚀性研究 [J]. 泥沙研究. 2020, 45(1): 45-51. |
24 | MORGAN R, RICKSON R J. Slope Stabilization and Erosion Control: A Bioengineering Approach [M]. London: Taylor & Francis, 1995: 274. |
25 | 赵广琦, 张利权, 梁霞. 芦苇与入侵植物互花米草的光合特性比较. 生态学报, 2005, 25 (7): 1604- 1611. |
26 | 高占国, 张利权. 应用间接排序识别盐沼植被的光谱特征: 以崇明东滩为例. 植物生态学报, 2006, 30 (2): 252- 260. |
27 | 黄华梅, 张利权. 上海九段沙互花米草种群动态遥感研究. 植物生态学报, 2007, 31 (1): 75- 82. |
28 | 李行, 周云轩, 况润元. 上海崇明东滩岸线演变分析及趋势预测. 吉林大学学报(地球科学版), 2010, 40 (2): 417- 424. |
29 | 袁代亮, 何青, 王宪业, 等. 长江口潮滩沉积物抗剪强度分析. 泥沙研究, 2013, (2): 9- 15. |
30 | 孟蕾. 基于多光谱影像的长江口典型盐沼植被参数遥感定量反演 [D]. 上海: 华东师范大学, 2020. |
31 | 严格. 崇明东滩湿地盐沼植被生物量及碳储量分布研究 [D]. 上海: 华东师范大学, 2014. |
32 | 胡梦瑶. 崇明东滩潮间带前沿植被与泥沙沉积协同动态研究 [D]. 上海: 华东师范大学, 2020. |
33 | 吴绪旭. 长江口现代潮滩粒度和TS/TOC分布特征及其沉积微相指示意义 [D]. 上海: 华东师范大学, 2013. |
34 | 茅志昌, 虞志英, 徐海根. 上海潮滩研究 [M]. 上海: 华东师范大学出版社, 2014: 1-2. |
35 | 蒋丰佩. 异质潮滩水沙输运研究 [D]. 上海: 华东师范大学, 2012. |
36 | FOLK R L, WARD W C. Brazos River bar: A study in the significance of grain size parameters. Journal of Sedimentary Research, 1957, 27 (1): 3- 26. |
37 | LIU X, ZHENG J, ZHANG H, et al. Sediment critical shear stress and geotechnical properties along the modern Yellow River Delta, China. Marine Georesources & Geotechnology, 2018, 36 (8): 875- 882. |
38 | TOLHURST T J, BLACK K S, SHAYLER S A, et al. Measuring the in situ erosion shear stress of intertidal sediments with the Cohesive Strength Meter (CSM). Estuarine Coastal & Shelf Science, 1999, 49 (2): 281- 294. |
39 | CHEN Y, THOMPSON C, COLLINS M B. Saltmarsh creek bank stability: Biostabilisation and consolidation with depth. Continental Shelf Research, 2012, 35 (1): 64- 74. |
40 | LEDDEN M V, KESTEREN W G M V, WINTERWERP J C. A classification for erosion behaviour of sand-mud mixtures. Continental Shelf Research, 2004, 24 (1): 1- 11. |
41 | LICK W, JIN L, GAILANI J. Initiation of movement of quartz particles. Journal of Hydraulic Engineering, 2004, 130 (8): 755- 761. |
42 | SIMON A, COLLISON A. Scientific basis for streambank stabilization using riparian vegetation[C]//Proceedings of the 7th Federal Interagency Sedimentation Conference, Reno Nevada, 2001: V47–V54. |
43 | 李国荣, 胡夏嵩, 毛小青, 等. 青藏高原东北部黄土区草本与灌木植物根-土相互作用力学机理及其模型研究. 中国水土保持, 2013, (7): 37- 41. |
44 | 嵇晓雷. 基于植被根系分布形态的生态边坡稳定性研究 [D]. 南京: 南京林业大学, 2013. |
45 | 曹波, 曹志东, 王黎明, 等. 植物根系固土作用研究进展. 水土保持应用技术, 2009, (1): 26- 28. |
46 | 张豆豆, 梁新华, 王俊. 植物根系分泌物研究综述. 中国农学通报, 2014, 30 (35): 7. |
/
〈 |
|
〉 |