绿色化学诊疗方法

基于葫芦脲 [8] 的近红外有机超分子光热试剂的制备及其光热性能研究

  • 蔡文艳 ,
  • 潘悦 ,
  • 张琪伟 ,
  • 田阳
展开
  • 华东师范大学 化学与分子工程学院 上海市绿色化学与化工过程绿色化重点实验室, 上海 200062

收稿日期: 2022-08-09

  录用日期: 2022-09-30

  网络出版日期: 2023-01-07

基金资助

国家自然科学基金 (21904040, 21635003, 21827814, 21811540027); 上海市浦江人才计划 (19PJ1402800)

Preparation and photothermal studies on a cucurbit[8]uril-based near-infrared organic supramolecular photothermal agent

  • Wenyan CAI ,
  • Yue PAN ,
  • Qiwei ZHANG ,
  • Yang TIAN
Expand
  • Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China

Received date: 2022-08-09

  Accepted date: 2022-09-30

  Online published: 2023-01-07

摘要

光热治疗作为一种特异性高、侵入性小、毒副作用低的新型癌症治疗手段而备受关注. 本文开发了一种简便、有效、绿色的方法, 制备了一种新型的超分子光热材料. 该方法以商业化的二苯并四硫富瓦烯 (dibenzotetrathiafulvalene, DBTTF) 及葫芦脲 [8] (cucurbit[8]uril, CB[8]) 为原料, 在室温、敞口及微量水存在条件下研磨, 便可使DBTTF被空气中的氧气氧化并以自由基阳离子二聚体的方式组装在CB[8]空腔中, 使原本只有紫外吸收 (小于400 nm) 的DBTTF小分子转变为覆盖可见光及近红外吸收的三元超分子复合物, 其吸收波长最长超过了1000 nm. 该超分子体系的光热转换效率达到了18.7%, 且表现出良好的光热稳定性和生物相容性, 目前已成功应用于肿瘤活细胞的光热消融. 该超分子材料在光热治疗及其他光热转换领域具有潜在的应用前景.

本文引用格式

蔡文艳 , 潘悦 , 张琪伟 , 田阳 . 基于葫芦脲 [8] 的近红外有机超分子光热试剂的制备及其光热性能研究[J]. 华东师范大学学报(自然科学版), 2023 , 2023(1) : 186 -193 . DOI: 10.3969/j.issn.1000-5641.2023.01.019

Abstract

Photothermal therapy has attracted attention as a novel cancer treatment with high specificity, minimal invasiveness, and low toxicity. In this study, a facile, effective, and green method was developed to prepare a novel supramolecular photothermal material. Grinding a commercial dye, dibenzotetrathiafulvalene (DBTTF, with absorption <400 nm) with cucurbit[8]uril (CB[8]) in air with a small amount of water leads to the oxidation of DBTTF to radical cations. Furthermore, DBTTF dimerizes, assembles into the cavity of CB[8], and forms a ternary supramolecular complex with strong absorption in the visible and near-infrared regions, where the longest absorption wavelength exceeds 1000 nm. The photothermal conversion efficiency of the supramolecular system is 18.7%. The system exhibits good photothermal stability and biocompatibility, and has been successfully applied in the photothermal ablation of live tumor cells. This supramolecular material has potential applications in photothermal therapy and other photothermal conversion fields.

参考文献

1 LI X, YONG T, WEI Z, et al. Reversing insufficient photothermal therapy-induced tumor relapse and metastasis by regulating cancer-associated fibroblasts. Nature Communications, 2022, 13 (1): 2794- 2813.
2 CHEN C, PAN Y, LI D, et al. An intramolecular charge transfer-forster resonance energy transfer integrated unimolecular platform for two-photon ratiometric fluorescence sensing of methionine sulfoxide reductases in live-neurons and mouse brain tissues. Analytical Chemistry, 2022, 94 (16): 6289- 6296.
3 MEI Y, LIU Z, LIU M, et al. Two-photon fluorescence imaging and ratiometric quantification of mitochondrial monoamine oxidase-A in neurons. Chemical Communications, 2022, 58 (46): 6657- 6660.
4 WANG H, XUE K F, YANG Y, et al. In situ hypoxia-induced supramolecular perylene diimide radical anions in tumors for photothermal therapy with improved specificity. Journal of the American Chemical Society, 2022, 144 (5): 2360- 2367.
5 LIU S, ZHOU X, ZHANG H, et al. Molecular motion in aggregates: Manipulating tict for boosting photothermal theranostics. Journal of the American Chemical Society, 2019, 141 (13): 5359- 5368.
6 XU G, LI C, CHI C, et al. A supramolecular photosensitizer derived from an Arene-Ru(Ⅱ) complex self-assembly for NIR activated photodynamic and photothermal therapy. Nature Communications, 2022, 13 (1): 3064.
7 YOU C, LI Y, DONG Y, et al. Low-temperature trigger nitric oxide nanogenerators for enhanced mild photothermal therapy. ACS Biomaterials Science & Engineering, 2020, 6 (3): 1535- 1542.
8 ZHANG D, WU T, QIN X, et al. Intracellularly generated immunological gold nanoparticles for combinatorial photothermal therapy and immunotherapy against tumor. Nano Letters, 2019, 19 (9): 6635- 6646.
9 FU J J, ZHANG J Y, LI S P, et al. CuS nanodot-loaded thermosensitive hydrogel for anticancer photothermal therapy. Molecular Pharmaceutics, 2018, 15 (10): 4621- 4631.
10 ZHOU T, XIE S, ZHOU C, et al. All-in-one second near-infrared light-responsive drug delivery system for synergistic chemo-photothermal therapy. ACS Applied Bio Materials, 2022, 5 (8): 3841- 3849.
11 LEI S, ZHAO F, ZHANG J, et al. Metallo-dye-based supramolecular nanoassembly for NIR-Ⅱ cancer theranostics. Analytical Chemistry, 2022, 94 (23): 8399- 8408.
12 WU F, LU Y, MU X, et al. Intriguing H-aggregates of heptamethine cyanine for imaging-guided photothermal cancer therapy. ACS Applied Materials & Interfaces, 2020, 12 (29): 32388- 32396.
13 ZHANG W, LIN W, LI C, et al. Rational design of BODIPY-diketopyrrolopyrrole conjugated polymers for photothermal tumor ablation. ACS Applied Materials & Interfaces, 2019, 11 (36): 32720- 32728.
14 WU C, HUANG X, TANG Y, et al. Pyrrolopyrrole aza-BODIPY near-infrared photosensitizer for dual-mode imaging-guided photothermal cancer therapy. Chemical Communications, 2019, 55 (6): 790- 793.
15 ZOU Q, ABBAS M, ZHAO L, et al. Biological photothermal nanodots based on self-assembly of peptide-porphyrin conjugates for antitumor therapy. Journal of the American Chemical Society, 2017, 139 (5): 1921- 1927.
16 HU H, WANG H, YANG Y, et al. A bacteria-responsive porphyrin for adaptable photodynamic/photothermal therapy. Angewandte Chemie-International Edition, 2022, 61 (23): e202200799.
17 DUAN X, ZHANG Q, JIANG Y, et al. Semiconducting polymer nanoparticles with intramolecular motion-induced photothermy for tumor phototheranostics and tooth root canal therapy. Advanced Materials, 2022, 34 (17): e2200179.
18 CHEN P, MA Y, ZHENG Z, et al. Facile syntheses of conjugated polymers for photothermal tumour therapy. Nature Communications, 2019, 10 (1): 1192.
19 ZHANG Q, TIAN H. Effective integrative supramolecular polymerization. Angewandte Chemie-International Edition, 2014, 53 (40): 10582- 10584.
20 TANG B, LI W L, CHANG Y, et al. A supramolecular radical dimer: High-efficiency NIR-Ⅱ photothermal conversion and therapy. Angewandte Chemie-International Edition, 2019, 58 (43): 15526- 15531.
21 ZIGANSHINA A Y, KO Y H, JEON W S, et al. Stable π-dimer of a tetrathiafulvalene cation radical encapsulated in the cavity of cucurbit[8]uril. Chemical Communications, 2004, (7): 806- 807.
22 LI D, FENG Z, HAN Y, et al. Time-resolved encryption via a kinetics-tunable supramolecular photochromic system . Advanced Science, 2022, 9 (6): e2104790.
23 LI D, HAN Y, JIANG Y, et al. Achieving adjustable multifunction based on host-guest interaction-manipulated reversible molecular conformational switching. ACS Applied Materials & Interfaces, 2022, 14 (1): 1807- 1816.
24 ZHANG Q W, LI D, LI X, et al. Multicolor photoluminescence including white-light emission by a single host-guest complex. Journal of the American Chemical Society, 2016, 138 (41): 13541- 13550.
文章导航

/