收稿日期: 2022-07-26
录用日期: 2022-10-20
网络出版日期: 2023-01-07
基金资助
国家自然科学基金 (21971069)
N-alkylation modification of metal-organic frameworks to afford responsive fluorescence
Received date: 2022-07-26
Accepted date: 2022-10-20
Online published: 2023-01-07
为了获得具有刺激响应性发光功能的金属有机框架 (metal-organic frameworks, MOFs) 材料, 利用含荧光基团的烷基化试剂对含联吡啶单元的锆基MOF (Zr-bpy) 进行合成后N-烷基化修饰, 引入缺电子性吡啶基团, 同时赋予材料潜在的发光功能. 所得离子型材料 (Zr-bpy-MNap) 不发光. 但对溶剂和氨呈现选择性的荧光开启响应, 可制作成试纸用于溶剂识别和空气中氨的检测. 荧光开启响应与MOF中各种主客体相互作用和溶剂化作用有关. 材料本身不发光是由于溴离子和框架间主客体作用的淬灭效应, 而溶剂化作用或者氨与框架的主客体作用削弱或破坏了淬灭机制, 开启了来源于萘基与缺电子骨架间电荷转移跃迁的荧光.
刘晓艳 , 高恩庆 . N-烷基化修饰赋予金属有机框架荧光响应功能[J]. 华东师范大学学报(自然科学版), 2023 , 2023(1) : 73 -81 . DOI: 10.3969/j.issn.1000-5641.2023.01.008
In this study, the electron-deficient pyridinium group and the naphthalene fluorophore were simultaneously introduced to a bipyridyl-containing Zr(Ⅳ) metal-organic framework (MOF) by the N-alkylation post-synthetic modification. The obtained ionic MOF, Zr-bpy-MNap, is nonluminous in the pristine state but shows selective fluorescence turn-on responses to some solvents and ammonia. Test papers were prepared using the MOF for the identification of solvents and detection of ammonia in air. The fluorescence turn-on response is considered to be due to complex host-guest interactions and solvation effects. The MOF is non-fluorescent due to the quenching effects of the host-guest communications between the bromide ion and the framework. On exposure to some solvents or ammonia, the quenching mechanisms are weakened or destroyed by the solvation of bromide or host-guest interactions between ammonia and the framework, resulting in fluorescence turn-on responses. The fluorescence originates from the charge-transfer transition between the naphthyl group and the electron-deficient framework.
1 | DIERCKS C S, KALMUTZKI M J, DIERCKS N J, et al. Conceptual advances from werner complexes to metal-organic frameworks. ACS Central Science, 2018, 4 (11): 1457- 1464. |
2 | CHEN Z, KIRLIKOVALI K O, LI P, et al. Reticular chemistry for highly porous metal-organic frameworks: The chemistry and applications. Accounts of Chemical Research, 2022, 55 (4): 579- 591. |
3 | DING M, FLAIG R W, JIANG H L, et al. Carbon capture and conversion using metal-organic frameworks and MOF-based materials. Chemical Society Reviews, 2019, 48 (10): 2783- 2828. |
4 | XU W, YAGHI O M. Metal-organic frameworks for water harvesting from air, anywhere, anytime. ACS Central Science, 2020, 6 (8): 1348- 1354. |
5 | GUO J, QIN Y, ZHU Y, et al. Metal-organic frameworks as catalytic selectivity regulators for organic transformations. Chemical Society Reviews, 2021, 50 (9): 5366- 5396. |
6 | DUAN C, LIANG K, LIN J, et al. Application of hierarchically porous metal-organic frameworks in heterogeneous catalysis: A review. Science China Materials, 2022, 65 (2): 298- 320. |
7 | HE J, XU J, YIN J, et al. Recent advances in luminescent metal-organic frameworks for chemical sensors. Science China Materials, 2019, 62 (11): 1655- 1678. |
8 | GAO L L, GAO E Q. Metal-organic frameworks for electrochemical sensors of neurotransmitters. Coordination Chemistry Reviews, 2021, 434213784. |
9 | ZHOU X, JIN H, XIA B Y, et al. Molecular cleavage of metal-organic frameworks and application to energy storage and conversion. Advanced Materials, 2021, 33 (51): 2104341. |
10 | CHEN C, SUN J K, ZHANG Y J, et al. Flexible viologen-based porous framework showing X-ray induced photochromism with single-crystal-to-single-crystal transformation. Angewandte Chemie-International Edition, 2017, 56 (46): 14458- 14462. |
11 | LI X, LI Y, YANG X, et al. Cationic coordination polymers with thirteen-fold interpenetrating dia networks: Selective coloration and ion-controlled photochromism. Chemical Communications, 2021, 57 (93): 12496- 12499. |
12 | GUO M Y, LI G, YANG S L, et al. Metal-organic frameworks with novel catenane-like interlocking: Metal-determined photoresponse and uranyl sensing. Chemistry-A European Journal, 2021, 27 (66): 16415- 16421. |
13 | LI S L, HAN M, ZHANG Y, et al. X-ray and uv dual photochromism, thermochromism, electrochromism, and amine-selective chemochromism in an anderson-like Zn7 cluster-based 7-fold interpenetrated framework. Journal of the American Chemical Society, 2019, 141 (32): 12663- 12672. |
14 | FU T, WEI Y L, ZHANG C, et al. A viologen-based multifunctional Eu-MOF: Photo/electro-modulated chromism and luminescence. Chemical Communications, 2020, 56 (86): 13093- 13096. |
15 | SUI Q, REN X T, DAI Y X, et al. Piezochromism and hydrochromism through electron transfer: New stories for viologen materials. Chemical Science, 2017, 8 (4): 2758- 2768. |
16 | SUI Q, YUAN Y, YANG N N, et al. Coordination-modulated piezochromism in metal–viologen materials. Journal of Materials Chemistry C, 2017, 5 (47): 12400- 12408. |
17 | GONG T, LI P, SUI Q, et al. Switchable ferro-, ferri-, and antiferromagnetic states in a piezo- and hydrochromic metal-organic framework. Inorganic Chemistry, 2018, 57 (12): 6791- 6794. |
18 | GONG T, SUI Q, LI P, et al. Versatile and switchable responsive properties of a lanthanide-viologen metal-organic framework. Small, 2019, 15 (5): 1803468. |
19 | LI P, SUI Q, GUO M Y, et al. Selective chemochromic and chemically-induced photochromic response of a metal-organic framework. Chemical Communications, 2020, 56 (44): 5929- 5932. |
20 | SUN J K, YANG X D, YANG G Y, et al. Bipyridinium derivative-based coordination polymers: From synthesis to materials applications. Coordination Chemistry Reviews, 2019, 378533- 560. |
21 | GONG T, LI P, SUI Q, et al. A stable electron-deficient metal-organic framework for colorimetric and luminescence sensing of phenols and anilines. Journal of Materials Chemistry A, 2018, 6 (19): 9236- 9244. |
22 | LI G, YANG S L, LIU W S, et al. Photoinduced versus spontaneous host-guest electron transfer within a MOF and chromic/luminescent response. Inorganic Chemistry Frontiers, 2021, 8 (22): 4828- 4837. |
23 | YANG N N, FANG J J, SUI Q, et al. Incorporating electron-deficient bipyridinium chromorphores to make multiresponsive metal-organic frameworks. ACS Applied Materials & Interfaces, 2018, 10 (3): 2735- 2744. |
24 | YANG N N, SUN W, XI F G, et al. Postsynthetic N-methylation making a metal-organic framework responsive to alkylamines . Chemical Communications, 2017, 53 (10): 1747- 1750. |
25 | LIU X Y, YIN X M, YANG S L, et al. Chromic and fluorescence-responsive metal-organic frameworks afforded by N-amination modification. ACS Applied Materials & Interfaces, 2021, 13 (17): 20380- 20387. |
26 | YANG N N, ZHOU L J, LI P, et al. Space-confined indicator displacement assay inside a metal–organic framework for fluorescence turn-on sensing. Chemical Science, 2019, 10 (11): 3307- 3314. |
27 | YIN X M, GAO L L, LI P, et al. Fluorescence turn-on response amplified by space confinement in metal-organic frameworks. ACS Applied Materials & Interfaces, 2019, 11 (50): 47112- 47120. |
28 | RAMA G, ARDA A, MARECHAL J D, et al. Stereoselective formation of chiral metallopeptides. Chemistry-A European Journal, 2012, 18 (23): 7030- 7035. |
29 | DECOSTE J B, PETERSON G W, JASUJA H, et al. Stability and degradation mechanisms of metal-organic frameworks containing the Zr6O4(OH)4 secondary building unit . Journal of Materials Chemistry A, 2013, 1 (18): 5642- 5650. |
30 | NICKERL G, LEISTNER M, HELTEN S, et al. Integration of accessible secondary metal sites into MOFs for H2S removal . Inorganic Chemistry Frontiers, 2014, 1 (4): 325- 330. |
31 | KUMAR V, MIRZAEI A, BONYANI M, et al. Advances in electrospun nanofiber fabrication for polyaniline (PANI)-based chemoresistive sensors for gaseous ammonia. Trends in Analytical Chemistry, 2020, 129, 129115938. |
32 | SUI Q, LI P, YANG N N, et al. Differentiable detection of volatile amines with a viologen-derived metal-organic material. ACS Applied Materials & Interfaces, 2018, 10 (13): 11056- 11062. |
33 | NING D, LIU Q, WANG Q, et al. Pyrene-based MOFs as fluorescent sensors for PAHs: An energetic pathway of the backbone structure effect on response. Dalton Transactions, 2019, 48 (17): 5705- 5712. |
/
〈 |
|
〉 |