河口海岸学

赤潮异弯藻对CO2浓度、温度和营养盐变化的响应

  • 杨安强 ,
  • 赵丽侠 ,
  • 宋淑贞 ,
  • 刘倢 ,
  • 何彦龙 ,
  • 王艳娜
展开
  • 1. 华东师范大学 河口海岸学国家重点实验室, 上海 200241
    2. 自然资源部 东海生态中心, 上海 201206
    3. 自然资源部 海洋生态监测与修复技术重点实验室, 上海 201206
    4. 卑尔根大学 生物科学系, 卑尔根 N-5020, 挪威
    5. 长江三角洲河口湿地生态系统教育部/上海市野外科学观测研究站, 上海 202162

收稿日期: 2021-07-26

  录用日期: 2021-10-09

  网络出版日期: 2023-05-25

基金资助

国家外专千人计划项目(WQ20133100150); 自然资源部海洋生态监测与修复技术重点实验室开放基金(MEMRT202109); 自然资源部海洋空间资源管理技术重点实验室开放基金(KF-2021-107); 长江三角洲河口湿地生态系统教育部/上海市野外科学观测研究站开放课题(K202002); 华东师范大学配套建设经费(2016RCDW01)

Growth response of Heterosigma akashiwo to the changes of CO2 concentration, temperature and nutrient

  • Anqiang YANG ,
  • Lixia ZHAO ,
  • Shuzhen SONG ,
  • Jie LIU ,
  • Yanlong HE ,
  • Yanna WANG
Expand
  • 1. State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
    2. East China Sea Environmental Monitoring Center, State Oceanic Administration, Shanghai 201206, China
    3. East China Sea Ecological Center, the Ministry of Natural Resources, Shanghai 201206, China
    4. Department of Biological Sciences, University of Bergen, Bergen N-5020, Norway
    5. Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai Science and Technology Committee, Shanghai 202162

Received date: 2021-07-26

  Accepted date: 2021-10-09

  Online published: 2023-05-25

摘要

赤潮异弯藻 (Heterosigma akashiwo) 是爆发有害藻华的常见藻种, 也是危害海洋渔业的赤潮生物之一, 广泛分布在全球近岸海域. 随着大气CO2浓度升高、全球变暖及人类活动导致陆源营养盐入海通量的增加, 在河口及近岸海域频发藻华. 本研究通过调控营养盐浓度、CO2浓度和温度, 探讨了当前气候变化趋势下赤潮异弯藻生长对营养盐变化的响应. 结果显示, 在所有CO2浓度和温度条件下, 低磷组的赤潮异弯藻细胞密度和比生长速率均显著低于高磷组的; 当CO2浓度升高时, 赤潮异弯藻细胞最大密度和比生长速率均显著提高; 当同时升高CO2浓度和温度时, 其比生长速率再次显著增加; 赤潮异弯藻的生长对不同CO2浓度和温度的响应在4种营养条件下类似. 该研究表明, 磷浓度是控制赤潮异弯藻生长的主要因子, 在未来气候条件下赤潮异弯藻爆发藻华的强度和风险不断增加. 控制营养盐的增加, 特别是磷酸盐浓度, 可能是防控赤潮异弯藻爆发的关键手段之一. 该研究结果可为近岸水域的海洋生态管理提供参考.

本文引用格式

杨安强 , 赵丽侠 , 宋淑贞 , 刘倢 , 何彦龙 , 王艳娜 . 赤潮异弯藻对CO2浓度、温度和营养盐变化的响应[J]. 华东师范大学学报(自然科学版), 2023 , 2023(3) : 108 -117 . DOI: 10.3969/j.issn.1000-5641.2023.03.011

Abstract

Heterosigma akashiwo is one of the species of harmful algal blooms (HABs) threatening marine ecosystems and the fishing industry across coastal waters worldwide. With increasing global levels of atmospheric CO2 and global warming, HABs have increased in prevalence, duration, and geographic span; this phenomenon has been further stressed by intensified anthropogenic influences, such as eutrophication. Through controlled experiments with different nutrients, CO2 concentrations, and temperatures, our study aimed to understand the response of H. akashiwo to different nutrients with changes in climate. In all simulated CO2 and temperature scenarios, both cell density and the specific growth rate of H. akashiwo in the low phosphorus groups were significantly lower than those in the high phosphorus groups. Furthermore, the maximum cell density and specific growth rate of H. akashiwo were significantly enhanced by increased CO2, while the specific growth rate was accelerated by the dual effect of increased CO2 levels and temperature. The growth response of H. akashiwo to CO2 and temperature was similar between different nutrient treatments. Taken together, the results indicate that phosphorus concentration could be the major factor controlling the growth of H. akashiwo, and the intensity and risk of H. akashiwo blooming in the future is increasing. Hence, controlling the increase of nutrients, particularly phosphate, could be a critical pathway to decrease the occurrence of H. akashiwo blooms. In summary, our case study provides scientific support for marine ecological management of HABs.

参考文献

1 STOCKER T F, QIN D, PLATTNER G K, et al. Climate change 2013: The physical science basis [R]// Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2013.
2 GATTUSO J P, MAGNAN A, BILLé R, et al. Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios . Science, 2015, 349 (6243): c4722.
3 刘晓辉, 孙丹青, 黄备, 等. 东海沿岸海域表层海水酸化趋势及影响因素研究. 海洋与湖沼, 2017, 48, 398- 405.
4 石强, 杨鹏金, 霍素霞, 等. 近36年来渤海海水酸化进程 [C]// 中国环境科学学会学术年会(昆明, 2013). 北京: 中国环境科学学会, 2013.
5 杨顶田, 单秀娟, 刘素敏, 等. 三亚湾近10年 pH 的时空变化特征及对珊瑚礁石影响分析. 南方水产科学, 2013, (9): 1- 7.
6 MASSON-DELMOTTE V, ZHAI P, PIRANI A, et al. Climate change 2021: The physical science basis [R]// Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2021.
7 GAO K, BEARDALL J, H?DER D, et al. Effects of ocean acidification on marine photosynthetic organisms under the concurrent influences of warming, UV radiation, and deoxygenation. Frontiers in Marine Science, 2019, (6): 322.
8 FU F, ZHANG Y, WARNER M E, et al. A comparison of future increased CO2 and temperature effects on sympatric Heterosigma akashiwo and Prorocentrum minimum . Harmful Algae, 2008, 7 (1): 76- 90.
9 ERRERA R M, YVON-LEWIS S, KESSLER J D, et al. Reponses of the dinoflagellate Karenia brevis to climate change: pCO2 and sea surface temperatures . Harmful Algae, 2014, 37, 110- 116.
10 OU G, WANG H, SI R, et al. The dinoflagellate Akashiwo sanguinea will benefit from future climate change: The interactive effects of ocean acidification, warming and high irradiance on photo physiology and hemolytic activity . Harmful Algae, 2017, 68, 118- 127.
11 WANG H, NIU X, FENG X, et al. Effects of ocean acidification and phosphate limitation on physiology and toxicity of the dinoflagellate Karenia mikimotoi . Harmful Algae, 2019, 87, 101621.
12 DUTKIEWICZ S, MORRIS J J, FOLLOWS M J, et al. Impact of ocean acidification on the structure of future phytoplankton communities. Nature Climate Change, 2015, 5 (11): 1002- 1006.
13 GOBLER C J, DOHERTY O M, HATTENRATH-LEHMANN T K, et al. Ocean warming since 1982 has expanded the niche of toxic algal blooms in the North Atlantic and North Pacific oceans. Proceedings of the National Academy of Sciences, 2017, 114 (19): 4975- 4980.
14 HALLEGRAEFF G M. Ocean climate change, phytoplankton community response, and harmful algal blooms: A formidable predictive challenge. Journal of Phycology, 2010, 46 (2): 220- 235.
15 SHIKATA T, YOSHIKAWA S, MATSUBARA T, et al. Growth dynamics of Heterosigma akashiwo (Raphidophyceae) in Hakata Bay, Japan . European Journal of Phycology, 2008, 43 (4): 395- 411.
16 KEMPTON J, KEPPLER C J, LEWITUS A, et al. A novel Heterosigma akashiwo (Raphidophyceae) bloom extending from a South Carolina Bay to offshore waters . Harmful Algae, 2008, 7 (2): 235- 240.
17 BUTRóN A, MADARIAGA I, ORIVE E. Tolerance to high irradiance levels as a determinant of the bloom-forming Heterosigma akashiwo success in estuarine waters in summer . Estuarine, Coastal and Shelf Science, 2012, 107, 141- 149.
18 JI N, LIN L, LI L, et al. Metatranscriptome analysis reveals environmental and diel regulation of a Heterosigma akashiwo (Raphidophyceae) bloom . Environmental Microbiology, 2018, 20 (3): 1078- 1094.
19 LU D, QI Y, GU H, et al. Causative species of harmful algal blooms in Chinese coastal waters. Algological Studies, 2014, 145/146, 145- 168.
20 尹翠玲, 张秋丰, 胡延忠, 等. 2006年夏季渤海湾赤潮重点监控区的赤潮生物. 海洋湖沼通报, 2008, (1): 114- 119.
21 王年斌, 周遵春, 马志强, 等. 大连湾赤潮异弯藻赤潮的多元分析. 海洋学报, 2006, (3): 151- 156.
22 MEHDIZADEH ALLAF M, TRICK C G. Multiple-stressor design-of-experiment (DOE) and one-factor-at-a-time (OFAT) observations defining Heterosigma akashiwo growth and cell permeability . Journal of Applied Phycology, 2019, 31 (6): 3515- 3526.
23 KOK J W K, YEO D C J, LEONG S C Y. Growth and physiological responses of a tropical toxic marine microalga Heterosigma akashiwo (Heterokontophyta: Raphidophyceae) from Singapore waters to varying nitrogen sources and light conditions . Ocean Science Journal, 2015, 50 (3): 491- 508.
24 GE W, YIN X, CHAI C, et al. Bioaccumulation of PBDE congener 2, 2′ , 4, 4′ -tetrabromodiphenyl ether by Heterosigma akashiwo in response to different nutrient concentrations . Oceanological and Hydrobiological Studies, 2013, 42 (2): 139- 148.
25 MARTíNEZ R, ORIVE E, LAZA-MARTíNEZ A, et al. Growth response of six strains of Heterosigma akashiwo to varying temperature, salinity and irradiance conditions . Journal of Plankton Research, 2010, 32 (4): 529- 538.
26 MARA?óN E, LORENZO M P, CERME?O P, et al. Nutrient limitation suppresses the temperature dependence of phytoplankton metabolic rates. The ISME Journal, 2018, 12 (7): 1836- 1845.
27 HENNON G M M, WILLIAMSON O M, HERNáNDEZ LIMóN M D, et al. Non-linear physiology and gene expression responses of harmful alga Heterosigma akashiwo to rising CO2. Protist, 2019, 170 (1): 38- 51.
28 白玫, 吴辉. 利用SOM神经网络研究长江口邻近海域海表温度特征. 华东师范大学学报(自然科学版), 2018, (4): 184- 195.
29 施沈阳. 长江口及其附近海域营养盐和浮游植物时空分布数值模拟 [D]. 上海: 华东师范大学, 2020.
30 FU F X, PLACE A R, GARCIA N S, et al. CO2 and phosphate availability control the toxicity of the harmful bloom dinoflagellate Karlodinium veneficum . Aquatic Microbial Ecology, 2010, 59, 55- 65.
31 ADOLF J E, BACHVAROFF T R, PLACE A R. Environmental modulation of karlotoxin levels in strains of the cosmopolitan dinoflagellate Karlodinium veneficum (Dinophyceae) . Journal of phycology, 2009, 45 (1): 176- 192.
32 GUAN W, LI P. Dependency of UVR-induced photoinhibition on atomic ratio of N to P in the dinoflagellate Karenia mikimotoi . Marine Biology, 2017, 164, 31.
33 LEMA K A, LATIMIER M, NéZAN é, et al. Inter and intra-specific growth and domoic acid production in relation to nutrient ratios and concentrations in Pseudo-nitzschia: phosphate an important factor . Harmful Algae, 2017, 64, 11- 19.
34 YAMAGUCHI H, SAI K. Simulating the vertical dynamics of phosphate and their effects on the growth of harmful algae. Estuarine, Coastal and Shelf Science, 2015, 164, 425- 432.
35 BAEK S H, LEE M, KIM Y. Spring phytoplankton community response to an episodic windstorm event in oligotrophic waters offshore from the Ulleungdo and Dokdo islands, Korea. Journal of Sea Research, 2018, 132, 1- 14.
36 曾玲, 龙超, 文菁. 营养盐限制对利马原甲藻生长和产毒的影响. 广东农业科学, 2018, 45 (2): 135- 144.
37 HENNON G M M, HERNáNDEZ LIMóN M D, HALEY S T, et al. Diverse CO2-induced responses in physiology and gene expression among eukaryotic phytoplankton . Frontiers in Microbiology, 2017, (8): 2547.
38 GAO K, HELBLING E W, HÄDER D, et al. Responses of marine primary producers to interactions between ocean acidification, solar radiation, and warming [J]. Marine Ecology Progress Series. 2012, 470: 167-190.
39 BRANDENBURG K M, VELTHUIS M, VAN DE WAAL D B. Meta‐analysis reveals enhanced growth of marine harmful algae from temperate regions with warming and elevated CO2 levels . Global Change Biology, 2019, 25 (8): 2607- 2618.
40 ZHANG Y H, FU F X, WHEREAT E, et al. Bottom-up controls on a mixed-species HAB assemblage: A comparison of sympatric Chattonella subsalsa and Heterosigma akashiwo (Raphidophyceae) isolates from the Delaware Inland Bays, USA . Harmful Algae, 2006, 5 (3): 310- 320.
41 王燕, 宋洪军, 李艳, 等. 温度对赤潮异弯藻生长速率及细胞体积和生化组成影响的研究. 中国海洋大学学报, 2015, 45 (1): 041- 046.
42 颜天, 周名江, 钱培元. 赤潮异弯藻 Heterosigma akashiwo 的生长特性 . 海洋与湖沼, 2002, 33 (2): 209- 214.
43 ONO K, KHAN S, ONOUE Y. Effect of temperature and light intensity on the growth and toxicity of Heterosigma akashiwo (Raphidophyceae) . Aquaculture Research, 2000, 31, 417- 433.
44 STRAMSKI D, SCIANDRA A, CLAUSTRE H. Efffect of temperature, nitrogen, and light imitation on the optical properties of the marine datiom Thalassiosira pseudonana . Limnology and Oceanography, 2002, 47 (2): 392- 403.
45 GRIFFITH A W, DOHERTY O M, GOBLER C J. Ocean warming along temperate western boundaries of the Northern Hemisphere promotes an expansion of Cochlodinium polykrikoides blooms . Proceedings of the Royal Society B: Biological Sciences, 2019, 286 (1904): 20190340.
46 MOORE S K, MANTUA N J, HICKEY B M, et al. Recent trends in paralytic shellfish toxins in Puget Sound, relationships to climate, and capacity for prediction of toxic events. Harmful Algae, 2009, 8 (3): 463- 477.
文章导航

/