收稿日期: 2022-03-02
录用日期: 2022-05-11
网络出版日期: 2023-05-25
基金资助
国家重点研发计划(2018YFD0900901); 国家自然科学基金(41271519)
A historical sedimentary record of glacial activity in Krossfjorden, Arctic
Received date: 2022-03-02
Accepted date: 2022-05-11
Online published: 2023-05-25
对取自北极克罗斯峡湾的沉积物岩芯进行了沉积组分分析和放射性年代测定, 探讨了20世纪30年代以来粒度的垂直分布特征和沉积类型变化, 以揭示过去几十年高纬度冰川前沿峡湾地区发生的环境变化. 结果表明, 该区域自20世纪90年代以来沉积速率 (0.35 cm/a) 显著增加, 约为20世纪90年代以前的2倍 (0.16 cm/a). 20世纪90年代以后平均粒径和中值粒径增大, 出现了显著的沉积物粗化现象. 同时, 分选性下降, 偏度向正偏变化, 峰态波动增大, 粒度组成发生了显著变化. 沉积环境的改变反映出近三十年来克罗斯峡湾地区发生了环境变化, 气候变化引起冰川的快速融化, 进而增加了高纬度冰川前沿峡湾地区的陆源物质输入.
张鑫悦 , 邓兵 , 杜金洲 . 北极克罗斯峡湾冰川活动的沉积记录[J]. 华东师范大学学报(自然科学版), 2023 , 2023(3) : 43 -52 . DOI: 10.3969/j.issn.1000-5641.2023.03.005
In this study, sedimentary component analysis and radioactive dating of sediment core from Krossfjorden were used to evaluate the vertical distribution of grain sizes and sedimentary changes since the 1930s. The analysis helps us to understand the environmental changes that have taken place in fjords of the high-latitude glacier front over the past few decades. The results show that the sedimentation rate (0.35 cm/a) has increased significantly since the 1990s and is about twice the rate observed historically before the 1990s (0.16 cm/a). After the 1990s, the mean and median grain size increased and sediment coarsening appeared. Moreover, the composition of grain sizes changed significantly, including a decrease in the sorting coefficient, increase in kurtosis fluctuation, and positive skewness change. Changes in the sedimentary characteristics indicate that the environment has changed in the Krossfjorden during the last thirty years. Climate change has caused rapid glacier melting, which has significantly increased the proliferation of terrigenous materials in fjords of the high-latitude glacier front.
Key words: Arctic; Krossfjorden; grain size; deglaciation; sedimentary record
1 | ALEXEEV V A, WLSH J E, IVANOV V V, et al. Warming in the Nordic Seas, North Atlantic storms and thinning Arctic sea ice. Environmental Research Letters, 2017, 12 (8): 084011. |
2 | HENDRY K R, HUVENNE V A I, ROBINSON L F, et al. The biogeochemical impact of glacial meltwater from Southwest Greenland. Progress in Oceanography, 2019, 176, 102126. |
3 | 王康, 张廷军, 牟翠翠, 等. 从第三极到北极: 气候与冰冻圈变化及其影响. 冰川冻土, 2020, 42 (1): 104- 123. |
4 | STROEVE J, HOLLAND M M, MEIER W, et al. Arctic sea ice decline: Faster than forecast. Geophysical Research Letters, 2007, 34 (9): L09501. |
5 | SMITH R W, BIANCHI T S, ALLISON M, et al. High rates of organic carbon burial in fjord sediments globally. Nature Geoscience, 2015, 8 (6): 450- 453. |
6 | ZABORSKA A, WLODARSKA-KOWALCZUK M, LEGEZYNSKA J, et al. Sedimentary organic matter sources, benthic consumption and burial in west Spitsbergen fjords–Signs of maturing of Arctic fjordic systems?. Journal of Marine Systems, 2018, 180, 112- 123. |
7 | TESSIN A, MARZ C, BLAIS M A, et al. Arctic continental margin sediments as possible Fe and Mn sources to seawater as sea ice retreats: Insights from the Eurasian margin. Global Biogeochemical Cycles, 2020, 34 (8): 1- 15. |
8 | HAWKINGS J R, WADHAM J L, TRANTER M, et al. The effect of warming climate on nutrient and solute export from the Greenland Ice Sheet. Geochemical Perspectives Letters, 2015, 1 (1): 94- 104. |
9 | 李艳, 刘艳, 李安春, 等. 大连湾附近海域表层沉积物粒度特征及水动力环境指示. 海洋通报, 2014, 33 (5): 552- 558. |
10 | 张润, 金章东, 张飞, 等. 藏南冰前湖枪勇错近百年沉积速率变化及冰川进退反演. 湖泊科学, 2021, 33 (5): 1584- 1594. |
11 | SVENDSEN H, BESZCZYNSKAMOLLER A, HAGEN J O, et al. The physical environment of Kongsfjorden–Krossfjorden, an Arctic fjord system in Svalbard. Polar Research, 2002, 21 (1): 133- 166. |
12 | KUMAR P, PATTANAIK J K, KHARE N, et al. Geochemistry and provenance study of sediments from Krossfjorden and Kongsfjorden, Svalbard (Arctic Ocean). Polar Science, 2018, 18, 72- 82. |
13 | JERNAS P, KLITGAARD-KRISTENSEN D, HUSUM K, et al. Annual changes in Arctic fjord environment and modern benthic foraminiferal fauna: Evidence from Kongsfjorden, Svalbard. Global and Planetary Change, 2018, 163, 119- 140. |
14 | WARD R D. Carbon sequestration and storage in Norwegian Arctic coastal wetlands: Impacts of climate change. Science of the Total Environment, 2020, 748, 141343. |
15 | 刘玥莹. 长江与黄河三角洲的环境变化与营养盐埋藏及其对人类活动的响应 [D]. 上海: 华东师范大学, 2019. |
16 | MCCALL P, ROBBINS J, MATISOFF G. 137Cs and 210Pb transport and geochronologies in urbanized reservoirs with rapidly increasing sedimentation rates . Chemical Geology, 1984, 44 (1/2/3): 33- 65. |
17 | ANSPAUGH L R, CATLIN R J, GOLDMAN M. The global impact of the Chernobyl reactor accident. Science, 1988, 242 (4885): 1513- 1519. |
18 | RITCHIE J C, MCHENRY J R. Application of radioactive fallout cesium-137 for measuring soil erosion and sediment accumulation rates and patterns: A review. Journal of Environmental Quality, 1990, 19 (2): 215- 233. |
19 | KLAMINDER J, APPLEBY P, CROOK P, et al. Post-deposition diffusion of 137Cs in lake sediment: Implications for radiocaesium dating . Sedimentology, 2012, 59 (7): 2259- 2267. |
20 | FOLK R L, ANDREWS P B, LEWIS D W. Detrital sedimentary rock classification and nomenclature for use in New Zealand. New Zealand Journal of Geology Geophysics, 1970, 13 (4): 937- 968. |
21 | MCMANUS J. Grain size determination and interpretation [M]// TUCHER M. Techniques in Sedimentology. Oxford: Wiley-Blackwell, 1988: 63-85. |
22 | 李振山, 陈广庭, 冯起, 等. 塔克拉玛干沙漠腹地纵向沙垅表面沙物质粒度特征. 干旱区资源与环境, 1998, 12 (1): 21- 28. |
23 | 贾建军, 高抒, 薛允传. 图解法与矩法沉积物粒度参数的对比. 海洋与湖沼, 2002, 33 (6): 577- 582. |
24 | TESI T, SEMILETOV I, HUGELIUS G, et al. Composition and fate of terrigenous organic matter along the Arctic land–ocean continuum in East Siberia: Insights from biomarkers and carbon isotopes. Geochimica et Cosmochimica Acta, 2014, 133, 235- 256. |
25 | RUSAKOV V Y, BORISOV A P, SOLOVIEVA G Y. Sedimentation rates in different facies–genetic types of bottom sediments in the Kara Sea: Evidence from the 210Pb and 137Cs radionuclides . Geochemistry International, 2019, 57 (11): 1185- 1200. |
26 | ZABORSKA A, CARROLL J, PAPUCCI C, et al. Recent sediment accumulation rates for the western margin of the Barents Sea [J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2008, 55(20/21): 2352-2360. |
27 | GJELTEN H M, NORDLI Ø, ISAKSEN, et al. Air temperature variations and gradients along the coast and fjords of western Spitsbergen [J]. Polar Research, 2016, 35(1): 1-13. |
28 | ZHURAVSKIY D, IVANOV B, PAVLOV A. Ice conditions at Gronfjorden Bay, Svalbard, from 1974 to 2008. Polar Geography, 2012, 35 (2): 169- 176. |
29 | CARR J R, STOKES C R, VIELI A. Threefold increase in marine-terminating outlet glacier retreat rates across the Atlantic Arctic: 1992–2010. Annals of Glaciology, 2017, 58 (74): 72- 91. |
30 | 王春娟, 刘焱光, 董林森, 等. 白令海与西北冰洋表层沉积物粒度特征及其环境意义. 海洋地质与第四纪地质, 2015, 35 (3): 1- 9. |
31 | PEROVICH D, MEIER W, TSCHUDI M, et al. Arctic report card 2020: Sea ice [R]. Akureyri, Iceland: NOAA, 2020. |
32 | 王丽艳, 李广雪. 南极普里兹湾沉积物中生物硅对粒度测量结果的影响. 极地研究, 2020, 32 (1): 25- 36. |
33 | HUANG X, SUN M, XIANG L, et al. The effect of diatoms on the grain size of lake sediments: a case study of the sediments of Lake Kanas. Journal of Paleolimnology, 2020, 63 (2): 101- 111. |
34 | 张晋, 李安春, 万世明, 等. 生物硅对南海南部表层沉积物粒度分析结果的影响. 海洋地质与第四纪地质, 2016, 36 (3): 35- 46. |
35 | CHOUDHARY S, NAYAK G N, KHARE N. Provenance, processes and productivity through spatial distribution of the surface sediments from Kongsfjord to Krossfjord system, Svalbard [J]. 2018, 35(1): 47-56. |
36 | WADHAM J L, HAWKINGS J R, TARASOV L, et al. Ice sheets matter for the global carbon cycle. Nature Communications, 2019, 10 (1): 1- 17. |
37 | LALANDE C, FOREST A, BARBER D G, et al. Variability in the annual cycle of vertical particulate organic carbon export on Arctic shelves: Contrasting the Laptev Sea, Northern Baffin Bay and the Beaufort Sea. Continental Shelf Research, 2009, 29 (17): 2157- 2165. |
/
〈 |
|
〉 |