遥感与地理信息系统

基于SAR纹理和LightGBM的洪水淹没地区遥感应急监测

  • 孙诚 ,
  • 沈芳 ,
  • 唐儒罡
展开
  • 华东师范大学 河口海岸学国家重点实验室, 上海 200241

收稿日期: 2021-09-08

  录用日期: 2021-12-13

  网络出版日期: 2023-05-25

基金资助

上海市科委重点项目 (20DZ1204701)

Emergency monitoring of remote sensing for flood inundation region based on SAR texture and LightGBM

  • Cheng SUN ,
  • Fang SHEN ,
  • Rugang TANG
Expand
  • State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China

Received date: 2021-09-08

  Accepted date: 2021-12-13

  Online published: 2023-05-25

摘要

针对洪涝灾害期间淹水范围监测精准和时效的高要求, 本文提出了一种基于SAR (synthetic aperture radar)纹理信息和LightGBM算法的水体提取方法. 与SDWI (sentinel-1 dual-polarized water index)水体指数法、SVM (support vector machines)、RF (random forest)和GBDT (gradient boosting decision tree)算法对比表明, 在河道、湖泊和洪水淹没区三类重点监测区域, 该方法提取精度均达98%以上, 总体精度优于其他方法. 同时, 该方法的运行效率较其他方法提升20 ~ 100倍, 极大地提高了洪涝灾害期间淹水应急监测的时效性.

本文引用格式

孙诚 , 沈芳 , 唐儒罡 . 基于SAR纹理和LightGBM的洪水淹没地区遥感应急监测[J]. 华东师范大学学报(自然科学版), 2023 , 2023(3) : 82 -92 . DOI: 10.3969/j.issn.1000-5641.2023.03.009

Abstract

In response to the need for high timeliness and accuracy monitoring for inundation region during flood disaster, a new extraction method of water areas based on SAR texture and LightGBM was proposed. Compared with other methods, such as the SDWI water index, SVM, RF and GBDT methods, it shows that the accuracy of water extraction of river, lake and flooded area is beyond 98% and higher than other methods. Meanwhile, the operating efficiency of the proposed method is 20 ~ 100 times higher than other methods, which greatly improves the timeliness of inundation emergency monitoring during flood disaster.

参考文献

1 DANIEL A, GERALD F, VALENTIJN V. Modeling flood hazard zones at the sub-district level with the rational model integrated with GIS and remote sensing approaches. Water, 2015, 7 (7): 3531- 3564.
2 李香颜, 陈怀亮, 李友. 洪水灾害卫星遥感监测与评估研究综述. 中国农业气象, 2009, 30 (1): 102- 108.
3 孙亚勇, 李小涛, 杨锋杰, 等. 基于星载SAR数据的山区水体提取方法研究. 中国水利水电科学研究院学报, 2014, 12 (3): 258- 263.
4 贾诗超, 薛东剑, 李成绕, 等. 基于Sentinel-1数据的水体信息提取方法研究 [J]. 人民长江, 2019, 50(2): 213-217.
5 杨存建, 周成虎, 魏一鸣, 等. 星载SAR图像中居民地专题信息增强的方法探讨. 遥感技术与应用, 1998, (4): 5- 8.
6 LóPEZ-CALOCA A A, TAPIA-SILVA F O, LóPEZ F, et al. Analyzing short term spatial and temporal dynamics of water presence at a basin-scale in Mexico using SAR data. GIScience & Remote Sensing, 2020, 57 (7): 985- 1004.
7 SANDRA B, DOUG S, BRIAN B, et al. Operational surface water detection and monitoring using radarsat 2. Remote Sensing, 2016, 8 (4): 285.
8 LYU W T, YU Q Z, YU W X. Water extraction in SAR images using GLCM and support vector machine [C]// IEEE International Conference on Signal Processing. IEEE, 2010.
9 胡德勇, 李京, 陈云浩, 等. 单波段单极化SAR图像水体和居民地信息提取方法研究. 中国图象图形学报, 2008, (2): 257- 263.
10 吴永辉, 计科峰, 郁文贤. 利用SVM的全极化、双极化与单极化SAR图像分类性能的比较. 遥感学报, 2008, (1): 46- 53.
11 童莹萍, 冯伟, 全英汇, 等. 基于GF-3与Sentinel-2A图像融合的高精度水体提取算法. 无线电工程, 2021, 51 (8): 750- 753.
12 孟然, 沈蔚, 纪茜, 等. GBDT模型在遥感水深反演中的应用. 环境生态学, 2021, 3 (5): 1- 5.
13 张长水. 机器学习面临的挑战. 中国科学:信息科学, 2013, 43 (12): 1612- 1623.
14 欧东璟. 基于多分类器融合的高光谱遥感图像分类 [D]. 济南: 山东大学, 2019.
15 刘新伟, 黄武斌, 蒋盈沙, 等. 基于LightGBM算法的强对流天气分类识别研究. 高原气象, 2021, (4): 909- 918.
16 张国庆, 昌宁. 基于LightGBM的银行信用卡违约研究. 科技资讯, 2019, 17 (12): 8- 9.
17 王恒, 姜亚楠, 张欣, 等. 基于梯度提升算法的岩性识别方法. 吉林大学学报(地球科学版), 2021, 51 (3): 940- 950.
18 IAIN H W. 微波遥感导论 [M]. 北京: 科学出版社, 2014: 3.
19 HARALICK R M, SHANMUGAM K, DINSTEIN I. Textural features for image classification. Studies in Media and Communication, 1973, SMC-3 (6): 610- 621.
20 GONG M, LI Y, JIAO L, et al. Sar change detection based on intensity and texture changes. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 93, 123- 135.
21 GONG L X, WANG C, WU F, et al. Earthquake-induced building damage detection with post-event sub-meter VHR terraSAR-X staring spotlight Imagery. Remote Sensing, 2016, 8 (11): 887- 888.
22 胡召玲, 李海权, 杜培军. SAR图像纹理特征提取与分类研究. 中国矿业大学学报, 2009, 38 (3): 422- 427.
23 李强, 张景发, 龚丽霞, 等. SAR图像纹理特征相关变化检测的震害建筑物提取. 遥感学报, 2018, 22 (S1): 128- 138.
24 马晓君, 沙靖岚, 牛雪琪. 基于LightGBM算法的P2P项目信用评级模型的设计及应用. 数量经济技术经济研究, 2018, 35 (5): 144- 160.
25 张梓童, 王恒, 高世臣, 等. 基于特征选择和梯度提升算法的高光谱遥感地物识别. 数学的实践与认识, 2019, 49 (22): 187- 196.
26 杨魁, 杨建兵, 江冰茹. Sentinel-1卫星综述. 城市勘测, 2015, (2): 24- 27.
文章导航

/