河口海岸学

滨海湿地中溶解态CH4的通量及影响因子

  • 张颖 ,
  • 张晓慧 ,
  • 刘婷婷 ,
  • 杨芷璇 ,
  • 唐剑武
展开
  • 1. 华东师范大学 河口海岸学国家重点实验室, 上海 200241
    2. 崇明生态研究院, 上海 202162
    3. 长江三角洲河口湿地生态系统教育部/上海市野外科学观测研究站, 上海 200241

收稿日期: 2022-01-29

  录用日期: 2022-05-23

  网络出版日期: 2023-05-25

基金资助

自然资源部海洋生态监测与修复技术重点实验室开放基金 (MEMRT202001); 龙港市河口红树林生态系统监测项目 (LGCG2021350); 蓝色海湾项目工程监测与评估项目

Fluxes and influencing factors of dissolved CH4 in coastal wetlands

  • Ying ZHANG ,
  • Xiaohui ZHANG ,
  • Tingting LIU ,
  • Zhixuan YANG ,
  • Jianwu TANG
Expand
  • 1. State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
    2. Institute of Eco-Chongming, Shanghai 202162, China
    3. Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai Science and Technology Committee, Shanghai 200241, China

Received date: 2022-01-29

  Accepted date: 2022-05-23

  Online published: 2023-05-25

摘要

以长江口滨海湿地的九段沙湿地和西沙湿地为研究区域, 探究了滨海湿地水体中溶解态CH4浓度和通量的变化过程及影响因子. 采样期间, CH4溶存浓度有显著的季节变化: 九段沙秋季的CH4平均溶存浓度最大, 为(0.30 ± 0.19) μmol·L–1; 西沙夏季的CH4平均溶存浓度最大, 为(1.16 ± 1.52) μmol·L–1. 西沙的CH4平均溶存浓度 ((0.56 ± 0.91) μmol·L–1) 高于九段沙 ((0.18 ± 0.17) μmol·L–1). 通过主成分分析发现, CH4的时空变化主要与滨海湿地的季节更替及潮汐作用有关, 低温、高盐度和富氧环境都将抑制CH4的合成. 对于不同的季节和研究区域, 溶解态CH4的通量变化也有显著差异. 九段沙和西沙水环境向大气扩散的CH4通量分别在秋季((0.45 ± 0.43) nmol·m–2·s–1)和夏季((3.34 ± 5.21) nmol·m–2·s–1)最大. 两者向长江口水平输送的CH4通量分别在秋季((2.32 ± 9.32) nmol·m–2·s–1)和夏季((1.66 ± 5.06) nmol·m–2·s–1)最大. 利用水质参数与CH4溶存浓度拟合多元回归方程, 获得高频率、连续观测的CH4溶存浓度. 进一步计算得到九段沙和西沙的溶解态CH4年均横向输送通量, 分别为 1.46 mg·m–2·d–1和 0.34 mg·m–2·d–1, 年均垂向扩散通量分别为 1.85 mg·m–2·d–1和 2.90 mg·m–2·d–1. 还揭示了滨海湿地中溶解态CH4是大气和沿岸水体中CH4的重要来源之一.

本文引用格式

张颖 , 张晓慧 , 刘婷婷 , 杨芷璇 , 唐剑武 . 滨海湿地中溶解态CH4的通量及影响因子[J]. 华东师范大学学报(自然科学版), 2023 , 2023(3) : 93 -107 . DOI: 10.3969/j.issn.1000-5641.2023.03.010

Abstract

The process of change and factors influencing dissolved CH4 concentration and flux in the coastal wetlands of Jiuduansha (JDS) and Xisha (XS) in the Yangtze Estuary were explored. The concentration of dissolved CH4 varied significantly during the sampling period, with the highest in JDS wetland being (0.30±0.19) μmol·L–1 during autumn, while that in XS wetland being (1.16±1.52) μmol·L–1 during summer. The average dissolved CH4 concentration in XS wetland ((0.56±0.91) μmol·L–1) was slightly higher than that in JDS wetland ((0.18±0.17) μmol·L–1). Principal component analysis revealed that the temporal and spatial variations in CH4 were mainly related to seasonal variation and tidal cycling in coastal wetlands. The CH4 emission under low-temperature, high-salinity, and oxygen-rich water environments was limited. The fluxes of dissolved CH4 also showed seasonal and regional variations. The water-to-air diffusion of CH4 was the largest in autumn in JDS wetlands ((0.45±0.43) nmol·m–2·s–1) and in summer in XS wetlands ((3.34±5.21) nmol·m–2·s–1). The lateral fluxes of dissolved CH4 were maximum in autumn in JDS wetlands ((2.32±9.32) nmol·m–2·s–1) and in summer in XS wetlands ((1.66±5.06) nmol·m–2·s–1). Use of water quality parameters and dissolved CH4 concentration to fit a multiple regression equation produced a high-frequency and continuous CH4 concentration. The annual average lateral transport flux (JDS wetland: 1.46 mg·m–2·d–1; XS wetland: 0.34 mg·m–2·d–1) and annual average vertical diffusion flux (JDS wetland: 1.85 mg·m–2·d–1; XS wetland: 2.90 mg·m–2·d–1) of dissolved CH4 was calculated. The results show that dissolved CH4 in coastal wetlands is an important sources of CH4 in the atmosphere and coastal waters.

参考文献

1 SOLOMOM S, QIN D, MANNING M, et al. Technical summary. Climate change 2007: The physical science basis. Contribution of working group I to the fourth [R]. Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2007: 19-91.
2 World Meteorologieal Organization. WMO Greenhouse Gas Bulletin (GHG Bulletin): The state of greenhouse gases in the atmosphere based on global observations through 2019 [EB/OL]. (2020-11-23)[2022-01-10]. https://www.doc88.com/p-31173044719519.html.
3 SEITZING S P, KROEZE C, STYLES R V. Global distribution of N2O emissions from aquatic systems: Natural emissions and anthropogenic effects . Chemosphere Global Change Science, 2000, 2 (3/4): 267- 279.
4 MUSENZE R S, WERNER U, GRINHAM A, et al. Methane and nitrous oxide emissions from a subtropical estuary (the Brisbane River estuary, Australia). Science of the Total Environment, 2014, 472, 719- 729.
5 CHMURA G L, ANISFDLD S C, CAHOON D R, et al. Global carbon sequestration in tidal, saline wetland soils. Global Biogeochemical Cycles, 2003, 17 (4): 1111.
6 TONG C, WANG W Q, HUANG J F, et al. Invasive alien plants increase CH4 emissions from a subtropical tidal estuarine wetland . Biogeochemistry, 2012, 111 (1/2/3): 677- 693.
7 CHAMBERLAIN S D, GOMEZ-CASANOVAS N, WALTER M T, et al. Influence of transient flooding on methane fluxes from subtropical pastures. Journal of Geophysical Research: Biogeosciences, 2016, 121 (3): 965- 977.
8 SáNCHEZ-RODRíGUEZ J, SIERRA A, JIMéNEZ-LóPEZ D, et al. Dynamic of CO2, CH4 and N2O in the Guadalquivir estuary . Science of the Total Environment, 2022, 805, 150193.
9 汪青, 刘敏, 侯立军, 等. 崇明东滩湿地 CO2、CH4和 N2O 排放的时空差异 . 地理研究, 2010, 29 (5): 935- 946.
10 JØRGENSEN B B, KASTEN S. Sulfur cycling and methane oxidation [M]// SCHULZ H D, MATTHIAS Z. Marine Geochemistry. Berlin, Heidelberg : Springer Verlag , 2006: 271-309.
11 贺文君, 韩广轩, 宋维民, 等. 潮汐作用对黄河三角洲盐沼湿地甲烷排放的影响. 生态学报, 2019, 39 (17): 6238- 6246.
12 许鑫王豪, 赵一飞, 邹欣庆, 等. 中国滨海湿地 CH4通量研究进展 . 自然资源学报, 2015, 30 (9): 1594- 1605.
13 OSBURN C L, MIKAN M P, ETHERIDGE J R, et al. Seasonal variation in the quality of dissolved and particulate organic matter exchanged between a salt marsh and its adjacent estuary. Journal of Geophysical Research: Biogeosciences, 2015, 120 (7): 1430- 1449.
14 BOGARD M J, BERGAMASCHI B A, BUTMAN D E, et al. Hydrologic export is a major component of coastal wetland carbon budgets [J]. Global Biogeochemical Cycles, 2020, 34(8): e2019GB006430.
15 高洁, 郑循华, 王睿, 等. 漂浮通量箱法和扩散模型法测定内陆CH4和N2O排放通量的初步比较研究 [J]. 气候与环境研究, 2014, 19(3): 290-302.
16 ARéVALO-MARTíNEZ D L, BEYER M, KRUMBHOLZ M, et al. A new method for continuous measurements of oceanic and atmospheric N2O, CO and CO2: Performance of off-axis integrated cavity output spectroscopy (OA-ICOS) coupled to non-dispersive infrared detection (NDIR) . Ocean Science, 2013, 9 (6): 1071- 1087.
17 PUMPANEN J, KOLARI P, ILVESNIEMI H, et al. Comparison of different chamber techniques for measuring soil CO2 efflux . Agricultural and Forest Meteorology, 2004, 123 (3/4): 159- 176.
18 GUéRIN F, ABRIL G, SER?A D, et al. Gas transfer velocities of CO2 and CH4 in a tropical reservoir and its river downstream . Journal of Marine Systems, 2007, 66 (1/2/3/4): 161- 172.
19 SANTOS I R, MAHER D T, EYRE B D, et al. Coupling automated radon and carbon dioxide measurements in coastal waters. Environmental Science & Technology, 2012, 46 (14): 7685- 7691.
20 WEBB J R, MAHER D T, SANTOS I R, et al. Automated, in situ measurements of dissolved CO2, CH4, and δ13C values using cavity enhanced laser absorption spectrometry: Comparing response times of air-water equilibrators [J]. Limnology and Oceanography: Methods, 2016, 14(5): 323-337.
21 崔百惠. 九段沙附近水体浮游植物群落结构变化研究 [D]. 上海: 上海师范大学, 2014.
22 陈家宽. 上海九段沙湿地自然保护区科学考察集 [M]. 北京: 科学出版社, 2003.
23 马华, 陈秀芝, 潘卉, 等. 持续收割对上海九段沙湿地芦苇生长特征、生物量和土壤全氮含量的影响. 生态与农村环境学报, 2013, 29 (2): 209- 213.
24 马安娜, 陆健健. 长江口崇西湿地生态系统的二氧化碳交换及潮汐影响. 环境科学研究, 2011, 24 (7): 716- 721.
25 沙晨燕, 王天慧, 陆健健. 林泽湿地抗 SO2木本植物的初步研究 . 环境科学研究, 2009, 22 (2): 181- 186.
26 陈梓涵. 九段沙潮汐盐沼湿地 CO2 通量及影响机制研究 [D]. 上海: 华东师范大学. 2020.
27 ZHANG G L, ZHANG J, LIU S M, et al. Methane in the Changjiang (Yangtze River) Estuary and its adjacent marine area: Riverine input, sediment release and atmospheric fluxes. Biogeochemistry, 2008, 91 (1): 71- 84.
28 翁笑艳, 林美爱, 严颖. 地表水浮游植物叶绿素 a 测定方法比较研究. 中国环境监测, 2009, 25 (3): 36- 39.
29 林罗敏, 唐鹊辉, 彭亮, 等. 浮游植物叶绿素 a 的微波法研究及其与反复冻融法的比较. 湖泊科学, 2016, 28 (5): 1148- 1152.
30 TAN L S, GE Z M, LI S H, et al. Reclamation-induced tidal restriction increases dissolved carbon and greenhouse gases diffusive fluxes in salt marsh creeks. Science of the Total Environment, 2021, 773, 145684.
31 晏维金, 王蓓, 李新艳, 等. 河流溶存 N2O 的环境化学过程及其在水-气界面交换过程的研究 . 农业环境科学学报, 2008, 27 (1): 15- 22.
32 SANDER R. Compilation of Henry’s law constants (version 4.0) for water as solvent. Atmospheric Chemistry and Physics, 2015, 15 (8): 4399- 4981.
33 WANNINKHOF R. Relationship between wind speed and gas exchange over the ocean revisited. Limnology and Oceanography Methods, 2014, 12 (6): 351- 362.
34 RAYMOND P A, COLE J J. Gas exchange in rivers and estuaries: Choosing a gas transfer velocity. Estuaries, 2001, 24 (2): 312- 317.
35 吴琼. 九段沙湿地自然保护区及其附近水体浮游植物的研究 [D]. 上海: 上海师范大学. 2009.
36 黄国宏, 李玉祥, 陈冠雄, 等. 环境因素对芦苇湿地 CH4排放的影响 . 环境科学, 2001, 22 (1): 1- 5.
37 YVON-DUROCHER G, ALLEN A P, BASTVIKEN D, et al. Methane fluxes show consistent temperature dependence across microbial to ecosystem scales. Nature, 2014, 507 (7493): 488- 491.
38 NATCHIMUTHU S, SUNDGREN I, G?IFALK M, et al. Spatio-temporal variability of lake CH4 fluxes and its influence on annual whole lake emission estimates . Limnology and Oceanography, 2016, 61 (S1): S13- S26.
39 HARLEY J F, CARVALHO L, DUDLEY B, et al. Spatial and seasonal fluxes of the greenhouse gases N2O, CO2 and CH4 in a UK macrotidal estuary . Estuarine Coastal and Shelf Science, 2015, 153, 62- 73.
40 姜欢欢, 孙志高, 王玲玲, 等. 秋季黄河口滨岸潮滩湿地系统 CH4通量特征及影响因素研究 . 环境科学, 2012, 33 (2): 565- 573.
41 Sun Z G, JIANG H H, WANG L L, et al. Seasonal and spatial variations of methane emissions from coastal marshes in the northern Yellow River estuary, China. Plant and Soil, 2013, 369 (1/2): 317- 333.
42 CHEN Q F, GUO B B, ZHAO C S, et al. Characteristics of CH4 and CO2 emissions and influence of water and salinity in the Yellow River delta wetland, China . Environmental Pollution, 2018, 239, 289- 299.
43 曾从盛, 王维奇, 仝川. 不同电子受体及盐分输入对河口湿地土壤甲烷产生潜力的影响. 地理研究, 2008, 27 (6): 1321- 1330.
44 BARTLETT K B, BARTLETT D S, HARRISS R C, et al. Methane emissions along a salt marsh salinity gradient. Biogeochemistry, 1987, 4 (3): 183- 202.
45 KLüBER H. Inhibitory effects of nitrate, nitrite, NO and N2O on methanogenesis by Methanosarcina barkeri and Methanobacterium bryantii . FEMS Microbiology Ecology, 1998, 25 (4): 331- 339.
46 DEPPE M, KNORR K H, MCKNIGHT D M, et al. Effects of short-term drying and irrigation on CO2 and CH4 production and emission from mesocosms of a northern bog and an alpine fen . Biogeochemistry, 2010, 100 (1/2/3): 89- 103.
47 CHEN H, WU N, WANG Y F, et al. Inter-annual variations of methane emission from an open fen on the Qinghai-Tibetan Plateau: A three-year study. PLoS One, 2013, 8 (1): e53878.
48 仝川, 曾从盛, 王维奇, 等. 闽江河口芦苇潮汐湿地甲烷通量及主要影响因子. 环境科学学报, 2009, 29 (1): 207- 216.
49 祝栋林. 太湖及玄武湖甲烷气体产生、释放及影响机制研究 [D]. 南京: 南京大学. 2012.
50 何凯, 王洪伟, 胡晓康, 等. 巢湖不同富营养化区域甲烷排放通量与途径. 中国环境科学, 2021, 41 (7): 3306- 3315.
51 WANG D Q, CHEN Z L, SUN W W, et al. Methane and nitrous oxide concentration and emission flux of Yangtze Delta plain river net. Science in China Series B: Chemistry, 2009, 52 (5): 652- 661.
52 ABRIL G, BORGES A V. Carbon dioxide and methane emissions from estuaries [M]// TREMBLAY A, VARFALVY L, ROEHM C, et al. Greenhouse Gas Emissions-Fluxes and Processes. Berlin, Heidelberg : Springer Verlag , 2005: 187-207.
53 RHEE T S, KETTLE A J, ANDREAE M O, et al. Methane and nitrous oxide emissions from the ocean: A reassessment using basin-wide observations in the Atlantic. Journal of Geophysical Research Atmospheres, 2009, 114 (D12): 1- 20.
54 马立杰, 崔迎春. 南海中部和北部上层海水中溶存甲烷浓度及海气交换通量. 热带海洋学报, 2013, 32 (2): 94- 101.
55 COTOVICZ L C, KNOPPER B A, BRANDINI N, et al. Spatio-temporal variability of methane (CH4) concentrations and diffusive fluxes from a tropical coastal embayment surrounded by a large urban area (Guanabara Bay, Rio de Janeiro, Brazil) . Limnology and Oceanography, 2016, 61 (S1): S238- S252.
56 CALL M, MAHER D T, SANTOS I R, et al. Spatial and temporal variability of carbon dioxide and methane fluxes over semi-diurnal and spring-neap-spring timescales in a mangrove creek. Geochimica et Cosmochimica Acta, 2015, 150, 211- 225.
57 LINTO N, BARNES J, RAMACHANDRAN R, et al. Carbon dioxide and methane emissions from mangrove associated waters of the Andaman Islands, Bay of Bengal. Estuaries and Coasts, 2014, 37 (2): 381- 398.
58 李佩佩. 黄河口及黄、渤海溶存甲烷和氧化亚氮的分布与释放通量 [D]. 山东 青岛: 中国海洋大学, 2010.
59 YANG W B, YUAN C S, TONG C, et al. Diurnal variation of CO2, CH4, and N2O emission fluxes continuously monitored in-situ in three environmental habitats in a subtropical estuarine wetland . Marine Pollution Bulletin, 2017, 119 (1): 289- 298.
60 RAJKUMAR A N, BARNES J, RAMESH R, et al. Methane and nitrous oxide fluxes in the polluted Adyar River and estuary, SE India. Marine Pollution Bulletin, 2008, 56 (12): 2043- 2051.
61 SAWAKUCHI H O, BASTVIKEN D, SAWAKUCHI A, et al. Methane emissions from Amazonian Rivers and their contribution to the global methane budget. Global Change Biology, 2014, 20 (9): 2829- 2840.
62 TILBROOK B D, KARL D M. Methane sources, distributions and sinks from California coastal waters to the oligotrophic North Pacific gyre. Marine Chemistry, 1995, 49 (1): 51- 64.
63 张桂玲, 张经. 海洋中溶存甲烷研究进展. 地球科学进展, 2001, 16 (6): 829- 835.
64 JAYAKUMAR D A, NAQVI S W A, NARVEKAR P V, et al. Methane in coastal and offshore waters of the Arabian Sea. Marine Chemistry, 2001, 74 (1): 1- 13.
文章导航

/