Study on the properties of temporal modes in stimulated Raman scattering
Received date: 2022-05-02
Online published: 2023-07-25
时间模式是一组正交的波包模式, 可用来表征时域多模量子光场, 为量子系统的描述提供一个可选择的理论框架. 基于输入种子光诱导的受激拉曼散射(stimulated Raman scattering, SRS)系统, 将输出的斯托克斯(Stokes)光场作为下一过程的输入种子光场, 进而实现连续迭代受激拉曼散射的过程; 固定泵浦光场为高斯波形和超高斯波形, 分别研究了在多种不同结构的高斯波形种子光输入的情形下, 输出斯托克斯光场的时域波形演化特性, 得到了不同波形种子光注入通过迭代会得到相同的稳定波形输出, 而输出光场波形的时间半高全宽(full-width at the half of the maximum, FWHM)依赖于泵浦光场; 运用施密特(Schmidt)模式分解, 数值研究了最终稳定输出的斯托克斯光场时间模式特性, 得到了稳定输出的斯托克斯光场本征值都集中在基模. 该光场时间模式特性的研究, 为进一步开发和利用时间模式这一量子资源提供了理论指导与实验参考.
卢晨 , 于志飞 , 焦高锋 , 陈丽清 , 袁春华 . 受激拉曼散射系统的时间模式特性研究[J]. 华东师范大学学报(自然科学版), 2023 , 2023(4) : 109 -118 . DOI: 10.3969/j.issn.1000-5641.2023.04.012
Temporal modes are a set of orthogonal wave-packet modes that can be used to characterize temporal multi-mode quantum light fields. They provide a complete alternate theoretical framework for the description of quantum systems. This study is based on light-induced seeding as an input to stimulated Raman scattering (SRS), whose output, the Stokes field, is the input seed field of the next SRS ; thus, the process of a continuous iterative SRS system is realized. The pump light field is then fixed in a Gaussian waveform and super-Gaussian waveform, and the temporal waveform evolution characteristics of the output Stokes light field under the input of Gaussian waveform seed light with various structures are studied. The seed light injection can obtain the same stable waveform output through iteration, and the FWHM (full-width at the half of the maximum) of the output light field waveform depends on the pump light field. Furthermore, Schmidt mode decomposition is applied to the final stable output waveform, and the eigenvalues of the final output Stokes field are all concentrated in the fundamental mode by numerical calculation. The research on the temporal mode properties of light presented in this paper provides theoretical guidance and experimental reference for the further development and utilization of the quantum resource of temporal modes.
1 | BRECHT B, REDDY D V, SILBERHORN C, et al. Photon temporal modes: A complete framework for quantum information science. Physical Review X, 2015, 5 (4): 041017. |
2 | RAYMER M G, WALMSLEY I A. Temporal modes in quantum optics: Then and now. Physica Scripta, 2020, 95 (6): 064002. |
3 | RAYMER M G, WALMSLEY I A, MOSTOWSKI J, et al. Quantum theory of spatial and temporal coherence properties of stimulated Raman scattering. Physical Review A, 1985, 32 (1): 332- 344. |
4 | HARDER G, BARTLEY T J, LITA A E, et al. Single-mode parametric-down-conversion states with 50 photons as a source for mesoscopic quantum optics [J] Physical Review Letters, 2016, 116(14): 143601. |
5 | HAAKE F, KING H, SCHR?DER G, et al. Fluctuations in superfluorescence. Physical Review A, 1979, 20 (5): 2047- 2063. |
6 | HELLER L, FARRERA P, HEINZE G, et al. Cold-atom temporally multiplexed quantum memory with cavity-enhanced noise suppression. Physical Review Letters, 2020, 124 (21): 210504. |
7 | TIRANOV A, STRASSMANN P C, LAVOIE J, et al. Temporal multimode storage of entangled photon pairs. Physical Review Letters, 2016, 117 (24): 240506. |
8 | RAYMER M G, LI Z W, WALMSLEY I A. Temporal quantum fluctuations in stimulated Raman scattering: Coherent-modes description. Physical Review Letters, 1989, 63 (15): 1586- 1589. |
9 | REDDY D V, RAYMER M G. Engineering temporal-mode-selective frequency conversion in nonlinear optical waveguides: From theory to experiment. Optics Express, 2017, 25 (11): 12952- 12966. |
10 | REDDY D V, RAYMER M G. Photonic temporal-mode multiplexing by quantum frequency conversion in a dichroic-finesse cavity. Optics Express, 2018, 26 (21): 28091- 28103. |
11 | DAVIS A O C, THIEL V, SMITH B J. Measuring the quantum state of a photon pair entangled in frequency and time. Optica, 2020, 7 (10): 1317- 1322. |
12 | ROHDE P P, MAUERER W, SILBERHORN C. Spectral structure and decompositions of optical states and their applications [J]. New Journal of Physics, 2007, 9(4): Article number 91. DOI: 10.1088/1367-2630/9/4/091. |
13 | REDDY D V, RAYMER M G. High-selectivity quantum pulse gating of photonic temporal modes using all-optical Ramsey interferometry. Optica, 2018, 5 (4): 423- 428. |
14 | FENG X T, YU Z F, CHEN B, et al. Reducing the mode mismatch noises in atom-light interactions via optimization of the temporal waveform. Photonics Research, 2020, 8 (11): 1697- 1702. |
15 | ANSARI V, HARDER G, ALLGAIER M, et al. Temporal-mode measurement tomography of a quantum pulse gate. Physical Review A, 2017, 96 (6): 063817. |
16 | ECKSTEIN A, BRECHT B, SILBERHORN C. A quantum pulse gate based on spectrally engineered sum frequency generation. Optics Express, 2011, 19 (15): 13770- 13778. |
17 | ANSARI V, DONOHUE J M, ALLGAIER M, et al. Tomography and purification of the temporal-mode structure of quantum light. Physical Review Letters, 2018, 120 (21): 213601. |
18 | YANG C, GU Z J, CHEN P, et al. Tomography of the temporal-spectral state of subnatural-linewidth single photons from atomic ensembles. Physical Review Applied, 2018, 10 (5): 054011. |
19 | ANSARI V, DONOHUE J M, BRECHT B, et al. Tailoring nonlinear processes for quantum optics with pulsed temporal-mode encodings. Optica, 2018, 5 (5): 534- 550. |
20 | ANSARI V, DONOHUE J M, BRECHT B, et al. Remotely projecting states of photonic temporal modes. Optics Express, 2020, 28 (19): 28295- 28305. |
21 | CUI L, SU J, LI J M, et al. Quantum state engineering by nonlinear quantum interference. Physical Review A, 2020, 102 (3): 033718. |
22 | CHEN X, ZHANG J, OU Z Y. Mode structure of a broadband high gain parametric amplifier. Physical Review Research, 2021, 3 (2): 023186. |
23 | HUO N, LIU Y H, LI J M, et al. Direct temporal mode measurement for the characterization of temporally multiplexed high dimensional quantum entanglement in continuous variables. Physical Review Letters, 2020, 124 (21): 213603. |
24 | CHEN X, LI X Y, OU Z Y. Direct temporal mode measurement of photon pairs by stimulated emission. Physical Review A, 2020, 101 (3): 033838. |
25 | RAYMER M G, REDDY D V, VAN ENK S J, et al. Time reversal of arbitrary photonic temporal modes via nonlinear optical frequency conversion. New Journal of Physics, 2018, 20 (5): 053027. |
26 | TANG J S, ZHOU Z Q, WANG Y T, et al. Storage of multiple single-photon pulses emitted from a quantum dot in a solid-state quantum memory [J]. Nature Communications, 2015, 6(1): Article number 8652. DOI: 10.1038/ncomms9652. |
27 | PATERA G, HOROSHKO D, KOLOBOV M. Quantum temporal imaging [C]// 2019 21st International Conference on Transparent Optical Networks (ICTON). IEEE, 2019. DOI: 10.1109/ICTON.2019.8840211. |
28 | RAYMER M G, MOSTOWSKI J. Stimulated Raman scattering: Unified treatment of spontaneous initiation and spatial propagation. Physical Review A, 1981, 24 (4): 1980- 1993. |
29 | MIATTO F M, DI LORENZO PIRES H, BARNETT S M, et al. Spatial Schmidt modes generated in parametric down-conversion [J]. The European Physical Journal D, 2012, 66(10): Article number 263. DOI: 10.1140/epjd/e2012-30035-3. |
30 | MACPHERSON D C, SWANSON R C, CARLSTEN J L. Quantum fluctuation and correlations in the stimulated Raman scattering spectrum. Physical Review A, 1989, 39 (7): 3487- 3497. |
/
〈 |
|
〉 |