收稿日期: 2022-04-30
网络出版日期: 2023-07-25
基金资助
国家自然科学基金(11775080, 11865016); 重庆市自然科学基金(CSTB2022NSCQ-MSX0351)
Effect of torsion on spin particles
Received date: 2022-04-30
Online published: 2023-07-25
有挠引力理论表明挠率–自旋耦合会影响自旋粒子在挠率场中的传播. 根据有挠弯曲时空中挠率耦合的狄拉克(Dirac)作用量, 将几何–流体动力学方法, 从闵氏度规的黎曼(Riemann)平时空推广到宇宙学时空的情形, 得到了描述在宇宙学Robertson-Walker度规和挠率背景场中, 运动的自旋1/2粒子行为的半经典流守恒方程、动力学方程、自旋演化方程, 以及挠率–自旋作用一般会使自旋粒子在时空中的传播路径偏离测地线; 对确定宇宙学挠率时空中自旋粒子的传播, 求出了其运动方程的解; 发现挠率使自旋粒子绕无挠情形的传播路径做螺旋进动, 这可以用来检验建立在有挠引力基础上的宇宙学模型.
惠鹏 , 薛迅 . 挠率对自旋粒子的作用[J]. 华东师范大学学报(自然科学版), 2023 , 2023(4) : 164 -176 . DOI: 10.3969/j.issn.1000-5641.2023.04.017
Theories of gravity with torsion indicate that spin-torsion coupling impacts the propagation of spin particles in a torsion field background. This paper encompasses the Dirac action in a curved spacetime with torsion, generalized geometrical hydrodynamics method from the flat Riemann spacetime to Robertson-Walker spacetime, and obtained semiclassical equations including the flow conservation equation, dynamic equation, and spin evolution equation, which describe the behavior of a spin 1/2 particle in arbitrary curved spacetime with torsion. These equations show that spin-torsion interaction usually causes the particles to deviate from the geodesic. Moreover, a solution for the cosmological background is found with definitive cosmological torsion; it concludes that the motion of the particle under the torsion field is a spiral motion along the propagation path, which the particle would take without torsion. This effect, subsequently, verifies the cosmological models established on theories of gravity with torsion.
1 | DONOGHUE J F. Is the spin connection confined or condensed?. Physical Review D, 2017, 96 (4): 044003. |
2 | DONOGHUE J F. Conformal model of gravitons. Physical Review D, 2017, 96 (4): 044006. |
3 | DONOGHUE J F. Quartic propagators, negative norms, and the physical spectrum. Physical Review D, 2017, 96 (4): 044007. |
4 | KOSTELECKY V A, SAMUEL S. Spontaneous breaking of Lorentz symmetry in string theory. Physical Review D, 1989, 39 (2): 683- 685. |
5 | CARROLL S M, HARVEY J A, KOSTELECKY V A, et al. Noncommutative field theory and Lorentz violation. Physical Review Letters, 2001, 87 (14): 141601. |
6 | ALFARO J, MORALES-TÉCOTL H A, REYES M, et al, Alternative approaches to Lorentz violation invariance in loop quantum gravity inspired models [J]. Physical Review D, 2004, 70(8): 084002. |
7 | SHEN J Y, XUE X. Large scale Lorentz violation gravity and dark energy [C]// Lepton Photon Interactions at High Energies , Lepton Photon 2017, Proceedings of the 28th International Symposium on Lepton Photon Interactions at High Energies (LP17). Singapore: World Scientific Publishing Co Pte Ltd, 2020: 459-475. |
8 | WU Y W, XUE X, YANG L X, et al. The effective gravitational theory at large scale with Lorentz violation [EB/OL]. (2015-10-18)[2022-03-02]. https://arxiv.org/abs/1510.00814. |
9 | 吴奕暐, 薛 迅. SIM(2)引力规范理论. 华东师范大学(自然科学版), 2016, (3): 76- 83. |
10 | YANG L X, WU Y W, WEI W Y, et al. The effective gravitation theory at large scale with Lorentz violation. Chinese Science Bulletin, 2017, 62 (9): 944- 950. |
11 | 魏文叶, 申佳音, 吴奕暐, 等. 大尺度有效引力的E(2)规范理论模型 . 物理学报, 2017, 66 (13): 130301. |
12 | 翟韩豫, 申佳音, 薛迅. 源自弦景观的有效Quintessence. 物理学报, 2019, 68 (13): 139501. |
13 | ZHAI H Y, SHEN J Y, XUE X, Uplifting of AdS type to quintessence-like potential induced by frozen large-scale Lorentz violation [J]. Chinese Physics C, 2020, 44(8): 085101, |
14 | LI Q, LI J, ZHOU Y X, et al. The effective potential originating from Swampland and the non-trivial Brans-Dicke coupling. Chinese Physics C, 2020, 44 (10): 105108. |
15 | LI J, ZHOU Y X, XUE X. Spatial curvature and large scale Lorentz violation. Chinese Physics C, 2022, 46 (6): 065101. |
16 | SHAPIRO I L. Physical aspects of the space-time torsion. Physics Reports, 2002, 357 (2): 113- 213. |
17 | HAMMOND R T. Torsion gravity. Reports on Progress in Physics, 2002, 65 (5): 599- 649. |
18 | TRUKHANOVA M. The geometro-hydrodynamical formalism of the quantum spinning particle. Progress of Theoretical and Experimental Physics, 2018, (12): 123A01. |
19 | TRUKHANOVA M I. The geometro-hydrodynamical representation of the torsion field. Physics Letters A, 2017, 381 (35): 2887- 2892. |
20 | HONGO M, HUANG X G, KAMINSKI M. Relativistic spin hydrodynamics with torsion and linear response theory for spin relaxation [J/OL]. Journal of High Energy Physics, 2021: 150. (2021-11-19)[2022-03-02]. https://doi.org/10.1007/JHEP11(2021)150. |
21 | TRUKHANOVA M I, OBUKHOV Y N. Quantum hydrodynamics of spinning particles in electromagnetic and torsion fields [J/OL]. Universe, 2021, 7(12): 498. (2021-12-15)[2022-03-02]. https://doi.org/10.3390/universe7120498. |
22 | TSAMPARLIS M. Cosmological principle and torsion. Physics Letters A, 1979, 75 (1/2): 27- 28. |
23 | NICACIO F, FALCIANO F T. Mean value of the quantum potential and uncertainty relations. Physical Review A, 2020, 101 (5): 052105. |
24 | MISNER C W, THORNE K S, WHEELER J A. Gravitation [M]. Princeton, New Jersey: Princeton University Press, 1973. |
25 | ALDROVANDI R, PEREIRA J G. Teleparallel Gravity [M]. Dordrecht Netherlands: Springer, 2013. |
/
〈 |
|
〉 |