物理学与电子学

应力导致的Fe2CrGe从反铁磁基态到铁磁半金属相变的计算研究

  • 郭锦 ,
  • 胡啸 ,
  • 谢文辉
展开
  • 1. 华东师范大学 物理与电子科学学院, 上海 200241
    2. 代尔夫特理工大学 微电子系, 代尔夫特 2628 CD, 荷兰

收稿日期: 2021-11-17

  网络出版日期: 2023-07-25

基金资助

国家自然科学基金 (51572086)

Computational study on strain-induced transition of Fe2CrGe from an antiferromagnetic ground state to a ferromagnetic half-metal state

  • Jin GUO ,
  • Xiao HU ,
  • Wenhui XIE
Expand
  • 1. School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
    2. Department of Microelectronics, Delft University of Technology, Delft 2628 CD, Netherlands

Received date: 2021-11-17

  Online published: 2023-07-25

摘要

运用第一性原理计算研究了惠斯勒(Heusler)合金Fe2CrGe的电子结构和磁性质, 发现其基态是Fe离子处于低自旋态 $(S=0),$ 而Cr离子处于高自旋态 $(S=1)$ 的反铁磁金属相, 反铁磁态能量比铁磁态能量约低0.103 eV. 此外还发现, 如果施加 +1.7%和 –1.7%的应变, Fe2CrGe会从反铁磁有序变成铁磁有序, 并出现半金属特性; 当应变达到±5%时, 出现了大约0.2 eV的半金属能隙. 通过平均场理论估算了Fe2CrGe的居里(Curie)温度, 发现其对应的居里温度为393 K, 远高于室温. 这表明Fe2CrGe是有潜力的自旋电子材料.

本文引用格式

郭锦 , 胡啸 , 谢文辉 . 应力导致的Fe2CrGe从反铁磁基态到铁磁半金属相变的计算研究[J]. 华东师范大学学报(自然科学版), 2023 , 2023(4) : 65 -73 . DOI: 10.3969/j.issn.1000-5641.2023.04.007

Abstract

In this study, the electronic structure and magnetism of the Heusler alloy Fe2CrGe are investigated using first-principle calculations. Results show that the ground state of Fe2CrGe is antiferromagnetic metal in which Fe ion and Cr ion are in low- and high-spin states of $ S=0 $ and $ S=1 $ , respectively. The energy of the antiferromagnetic state is approximately 0.103 eV less than that of the ferromagnetic state. In addition, when a tetragonal strain is applied to Fe2CrGe, a transition from antiferromagnetic to ferromagnetic material occurs at +1.7% and –1.7% strains, and Fe2CrGe becomes a ferromagnetic half-metal. A half-metal energy gap of approximately 0.2 eV occurs when the strain reaches ±5%. The Curie temperature of Fe2CrGe is estimated to be 393 K, which is much higher than room temperature, indicating that Fe2CrGe may be a potential candidate for spintronic applications.

参考文献

1 DE GROOT R A, MUELLER F M. New class of materials: Half-metallic ferromagnets. Physical Review Letters, 1983, 50 (25): 2024- 2027.
2 WOLF S A, AWSCHALOM D D, BUHRMAN R A, et al. Spintronics: A spin-based electronics vision for the future. Science, 2001, 294 (5546): 1488- 1495.
3 LI X X, YANG J L. First-principles design of spintronics materials. National Science Review, 2016, 3 (3): 365- 381.
4 SCHWARZ K. CrO2 predicted as a half-metallic ferromagnet . Journal of Physics F, 1986, 16 (9): L2115.
5 DEDKOV Y S, RüDIGER U, GüNTHERODT G. Evidence for the half-metallic ferromagnetic state of Fe3O4 by spin-resolved photoelectron spectroscopy . Physical Review B, 2002, 65 (6): 064417.
6 KOBAYASHI K I, KIMURA T, SAWADA H, et al. Room-temperature magnetoresistance in an oxide material with an ordered double-perovskite structure. Nature, 1998, 395 (6703): 677- 680.
7 ROGADO N S, LI J, SLEIGHT A W, et al. Magnetocapacitance and magnetoresistance near room temperature in a ferromagnetic semiconductor: La2NiMnO6. Advanced Materials, 2005, 17 (18): 2225- 2227.
8 AKINAGA H, MANAGO T, SHIRAI M. Material design of half-metallic zinc-blende CrAs and the synthesis by molecular-beam epitaxy. Japanese Journal of Applied Physics, 2000, 39 (11B): L1118- L1120.
9 XIE W H, XU Y Q, LIU B G, et al. Half-metallic ferromagnetism and structural stability of zincblende phases of the transition-metal chalcogenides. Physical Review Letters, 2003, 91 (21): 219901.
10 GALANAKIS I, DEDERICHS P H, PAPANIKOLAOU N. Origin and properties of the gap in the half-ferromagnetic Heusler alloys. Physical Review B, 2002, 66 (13): 134428.
11 SKAFTOUROS S, ?ZDO?AN K, ?A?IO?LU E, et al. Generalized Slater-Pauling rule for the inverse Heusler compounds. Physical Review B, 2013, 87 (2): 024420.
12 GAO G Y, YAO K L. Antiferromagnetic half-metals, gapless half-metals, and spin gapless semiconductors: The D03-type Heusler alloys . Applied Physics Letters, 2013, 103 (23): 232409.
13 XIANG H J, YANG J L, HOU J G, et al. Half-metallic ferromagnetism in transition-metal encapsulated boron nitride nanotubes [J]. New Journal of Physics, 2005, 7(1): Article number 39.
14 SON Y W, COHEN M L, LOUIE S G. Half-metallic graphene nanoribbons. Nature, 2006, 444, 347- 349.
15 ZHAO M W, WANG A Z, ZHANG X M. Half-metallicity of a kagome spin lattice: The case of a manganese bis-dithiolene monolayer. Nanoscale, 2013, 5 (21): 10404- 10408.
16 YOSHIMURA S, ASANO H, NAKAMURA Y, et al. Crystalline structure and magnetic properties of Fe2CrSi Heusler alloy films: New ferromagnetic material for high performance magnetic random access memory [J]. Journal of Applied Physics, 2008, 103(7): 07D716.
17 WANG Y P, HAN G C, LU H, et al. Tunnel magnetoresistance effect and interface study in magnetic tunnel junctions using epitaxial Fe2CrSi Heusler alloy electrode [J]. Journal of Applied Physics, 2013, 114(1): 013910.
18 ISHIDA S, MIZUTANI S, FUJII S, et al. Effect of chemical disorder on half-metallicity of Fe2CrZ (Z = IIIb, IV, Vb Element) . Materials Transactions, 2006, 47 (3): 464- 470.
19 MIZUTANI S, ISHIDA S, FUJII S, ASANO S. Half-metallicity and stability of ferromagnetism in (Fe1-xCox)2CrZ (Z = S, P Elements) . Materials Transactions, 2007, 48 (4): 748- 753.
20 HAMAD B A. The effect of defects on the electronic structure and magnetic map of the Fe2CrSi Heusler alloy: Ab-initio calculations . The European Physical Journal B, 2011, 80, 11- 18.
21 LUO H Z, ZHU Z Y, MA L, et al. Electronic structure and magnetic properties of Fe2YSi (Y = Cr, Mn, Fe, Co, Ni) Heusler alloys: A theoretical and experimental study . Journal of Physics D, 2007, 40 (22): 7121- 7127.
22 CHAKRABARTI A, D’SOUZA S W, BARMAN S R. Electronic structure of Fe2CrSn . Physica B, 2012, 407 (17): 3547- 3550.
23 KRESSE G, FURTHMüLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B, 1996, 54 (16): 11169- 11186.
24 PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple. Physical Review Letters, 1997, 77 (18): 3865- 3868.
25 MONKHORST H J, PACK J D. Special points for Brillouin-zone integrations. Physical Review B, 1976, 13 (12): 5188- 5192.
文章导航

/