物理学与电子学

光晶格中极性分子链的量子纠缠

  • 岳文静 ,
  • 魏启
展开
  • 华东师范大学 精密光谱科学与技术国家重点实验室, 上海 200241

收稿日期: 2022-03-07

  网络出版日期: 2023-07-25

基金资助

国家自然科学基金(11974113, 11674098)

Quantum entanglement of molecular dipole arrays trapped in an optical lattice

  • Wenjing YUE ,
  • Qi WEI
Expand
  • State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China

Received date: 2022-03-07

  Online published: 2023-07-25

摘要

极性分子受到外电场作用, 其分子轴将绕电场方向在一定范围内振荡, 形成摆动态. 通过选择能级最低的磁量子数 $ M = 0 $ 的两个摆动态作为量子比特, 研究了囚禁在一维光晶格中的分子链的量子纠缠. 计算了共生纠缠度、全局纠缠度与和电场强度、永久偶极矩、转动常数、偶极–偶极相互作用及温度等有关的3个无量纲变量之间的关系, 从而阐明了极性分子链的量子纠缠的特点.

本文引用格式

岳文静 , 魏启 . 光晶格中极性分子链的量子纠缠[J]. 华东师范大学学报(自然科学版), 2023 , 2023(4) : 74 -85 . DOI: 10.3969/j.issn.1000-5641.2023.04.008

Abstract

For a polar molecule subjected to an external electric field, its molecular axis will oscillate around the direction of the electric field, forming pendular states. Taking the two lowest-lying pendular states with magnetic quantum number $M=0 $ as qubit states, we study quantum entanglement of polar molecular arrays trapped in a one-dimensional optical lattice. We evaluate pairwise concurrence and global entanglement as functions of three dimensionless variables related to external field intensity–permanent dipole moment, a rotation constant, dipole-dipole interaction, and temperature —thus revealing the properties of the entangled molecular dipole arrays.

参考文献

1 FEYNMAN R P. Simulating physics with computers. International Journal of Theoretical Physics, 1982, 21 (6): 467- 488.
2 H?FFNER H, ROOS C F, BLATT R. Quantum computing with trapped ions. Physics Reports, 2008, 469 (4): 155- 203.
3 FENG M. Quantum computing with trapped ions in an optical cavity via Raman transition. Physical Review A, 2002, 66 (5): 054303.
4 SUTHERLAND R T, SRINIVAS R. Universal hybrid quantum computing in trapped ions. Physical Review A, 2021, 104 (3): 032609.
5 LOSS D, DIVINCENZO D P. Quantum computation with quantum dots. Physical Review A, 1998, 57 (1): 120- 126.
6 LEE J, LI Z B, YAO D X. Quantum computation with two-dimensional graphene quantum dots. Chinese Physics B, 2012, 21 (1): 017302.
7 XUE Z Y, ZHU S L, WANG Z D. Quantum computation in a decoherence-free subspace with superconducting devices. The European Physical Journal D, 2009, 55, 223- 228.
8 DORAI K, ARVIND, KUMAR A. Implementing quantum-logic operations, pseudopure states, and the Deutsch-Jozsa algorithm using noncommuting selective pulses in NMR. Physical Review A, 2000, 61 (4): 042306.
9 VANDERSYPEN L M K, CHUANG I L. NMR techniques for quantum control and computation. Reviews of Modern Physics, 2004, 76 (4): 1037.
10 DEMILLE D. Quantum computation with trapped polar molecules. Physical Review Letters, 2002, 88 (6): 067901.
11 ROMALIS M V, GRIFFITH W C, JACOBS J P, et al. New limit on the permanent electric dipole moment of 199Hg . Physical Review Letters, 2001, 86 (12): 2505.
12 MURTHY S A, KRAUSE D, LI Z L, et al. New limits on the electron electric dipole moment from cesium. Physical Review Letters, 1989, 63 (9): 965.
13 VOID T G, RAAB F J, HECKEL B, et al. Search for a permanent electric dipole moment on the 129Xe atom . Physical Review Letters, 1984, 52 (25): 2229.
14 MATERA R. L. Theoretical analysis of the electronic structure and molecular properties of the alkali halides. III. Sodium chloride. The Journal of Chemical Physics, 1968, 48 (1): 335.
15 IGEL-MANN G, WEDIG U, FUENTEALBA P, et al. Ground-state properties of alkali dimers XY (X, Y=Li to Cs)a). The Journal of Chemical Physics, 1986, 84 (9): 5007.
16 KAUFMAN M, WHARTON L, KLEMPERER W. Electronic structure of SrO. The Journal of Chemical Physics, 1965, 43 (3): 943- 952.
17 CARR L D, DEMILLE D, KREMS R V, et al. Cold and ultracold molecules: Science, technology and applications. New Journal of Physics, 2009, 11, 055049.
18 DULIEU O, GABBANINI C. The formation and interactions of cold and ultracold molecules: New challenges for interdisciplinary physics. Reports on Progress in Physics, 2009, 72, 086401.
19 ULMANIS J, DEIGLMAYR J, REPP M, et al. Ultracold molecules formed by photoassociation: Heteronuclear dimers, inelastic collisions, and interactions with ultrashort laser pulses. Chemical Reviews, 2012, 112, 4890- 4927.
20 DENG L, LIANG Y, GU Z, et al. Experimental demonstration of a controllable electrostatic molecular beam splitter. Physical Review Letters, 2011, 106 (14): 140401.
21 PELLEGRINI P, VRANCKX S, DESOUTER-LECOMTE M. Implementing quantum algorithms in hyperfine levels of ultracold polar molecules by optimal control. Physical Chemistry Chemical Physics, 2011, 13, 18864- 18871.
22 ZHU J, KAIS S, WEI Q, et al. Implementation of quantum logic gates using polar molecules in pendular states. The Journal of Chemical Physics, 2013, 138 (2): 024104.
23 ZHANG Z, LIU J, HU Z, et al. Implementation of three-qubit quantum computation with pendular states of polar molecules by optimal control. The Journal of Chemical Physics, 2020, 152, 044303.
24 WEI Q, KAIS S, FRIEDRICH B, et al. Entanglement of polar molecules in pendular states. The Journal of Chemical Physics, 2011, 134 (12): 124107.
25 MICHELI A, BRENNEN G K, ZOLLER P. A toolbox for lattice spin models with polar molecules. Nature Physics, 2006, 2, 341- 347.
26 CHARRON E, MILMAN P, KELLER A, et al. Quantum phase gate and controlled entanglement with polar molecules. Physical Review A, 2007, 75 (3): 033414.
27 KUZNETSOVA E, C?Té R, KIRBY K, et al. Analysis of experimental feasibility of polar-molecule-based phase gates. Physical Review A, 2008, 78 (1): 012313.
28 NI K-K, OSPELKAUS S, DE MIRANDA M H G, et al. A high phase-space-density gas of polar molecules. Science, 2008, 322, 231- 235.
29 DEIGLMAYR J, GROCHOLA A, REPP M, et al. Formation of ultracold polar molecules in the rovibrational ground state. Physical Review Letters, 2008, 101 (13): 133004.
30 WEI Q, KAIS S, CHEN Y P. Communications: Entanglement switch for dipole arrays. The Journal of Chemical Physics, 2010, 132 (12): 121104.
31 WEI Q, CAO Y D, KAIS S, et al. Quantum computation using arrays of N polar molecules in pendular states . ChemPhysChem, 2016, 17 (22): 3714- 3722.
32 NI K-K, ROSENBAND T, GRIMES D D. Dipolar exchange quantum logic gate with polar molecules. Chemical Science, 2018, (33): 6830- 6838.
33 WEI Q, KAIS S, FRIEDRICH B, et al. Entanglement of polar symmetric top molecules as candidate qubits. The Journal of Chemical Physics, 2011, 135 (15): 154102.
34 LIAO Y-Y. Bell states and entanglement of two-dimensional polar molecules in electric fields [J]. The European Physical Journal D, 2017, 71: Article number 277.
35 ZHANG Z Y, LIU J M. Quantum correlations and coherence of polar symmetric top molecules in pendular states. Scientific Reports, 2017, 7, 17822.
36 SCHR?DINGER E. The present status of quantum mechanics [J]. Die Naturwissenschaften, 1935, 23(48). https://homepages.dias.ie/dorlas/Papers/QMSTATUS.pdf.
37 WILK T, WEBSTER S C, KUHN A, et al. Single-atom single-photon quantum interface. Science, 2007, 317, 488- 490.
38 NEUMANN P, MIZUOCHI N, REMPP F, et al. Multipartite entanglement among single spins in diamond. Science, 2008, 320, 1326- 1329.
39 SHULMAN M D, DIAL O E, HARVEY S P, et al. Demonstration of entanglement of electrostatically coupled singlet-triplet qubits. Science, 2012, 336, 202- 205.
40 WEBER B, SPECHT H P, MüLLER T, et al. Photon-photon entanglement with a single trapped atom. Physical Review Letters, 2009, 102 (3): 030501.
41 VEDRAL V, PLENIO M B, RIPPIN M A, et al. Quantifying entanglement. Physical Review Letters, 1997, 78 (12): 2275- 2279.
42 BENNETT C H, DIVINCENZO D P, SMOLIN J A, et al. Mixed-state entanglement and quantum error correction. Physical Review A, 1996, 54 (5): 3824- 3851.
43 WOOTTERS W K. Entanglement of formation of an arbitrary state of two qubits. Physical Review Letters, 1998, 80 (10): 2245- 2248.
44 HILL S A, WOOTTERS W K. Entanglement of a pair of quantum bits. Physical Review Letters, 1997, 78 (26): 5022- 5025.
45 VIDAL G, WERNER R F. Computable measure of entanglement. Physical Review A, 2002, 65 (3): 032314.
46 VEDRAL V. The role of relative entropy in quantum information theory. Reviews of Modern Physics, 2002, 74 (1): 197- 234.
47 MEYER D A, WALLACH N R. Global entanglement in multiparticle systems. Journal of Mathematical Physics, 2002, 43 (9): 4273- 4278.
48 BRENNEN G K. An observable measure of entanglement for pure states of multi-qubit systems. Quantum Information and Computation, 2003, 3 (6): 619- 626.
文章导航

/