物理学与电子学

基于强激光场与固体靶相互作用的等离子体光栅产生新机制研究

  • 袁丰毅 ,
  • 王加祥 ,
  • 黄渊凌 ,
  • 祝旭忠
展开
  • 1. 华东师范大学 精密光谱科学与技术国家重点实验室, 上海 200241
    2. 华东师范大学 物理与电子科学学院 理论物理研究所, 上海 200241

收稿日期: 2022-04-30

  网络出版日期: 2023-07-25

基金资助

上海市科委“创新行动计划”基础研究项目 (18JC1412700)

Plasma grating generation based on interactions between intense lasers and solids

  • Fengyi YUAN ,
  • Jiaxiang WANG ,
  • Yuanling HUANG ,
  • Xuzhong ZHU
Expand
  • 1. State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
    2. Institute of Theoretical Physics, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China

Received date: 2022-04-30

  Online published: 2023-07-25

摘要

等离子体光栅由于不存在电磁场击穿效应, 因此在强场物理研究中有着重要的应用. 通过粒子 (particle-in-cell, PIC) 模拟的方法, 利用皮秒强激光脉冲 (激光场强度 $I$ 的数量级约为 ${10}^{15}\;\mathrm{W}/{\mathrm{c}\mathrm{m}}^{2}$ ) 与超临界密度固体靶 (粒子数密度 $n \approx 10{n}_{\rm{c}}$ ) 相互作用, 发现了一种等离子体数密度光栅产生的新机制. 研究表明, 这种新型等离子体光栅来源于强激光在固体靶中激发的等离子体波的干涉. 因此只需要单束激光就可以激发产生, 其持续时间可达数皮秒量级. 该光栅具有纳米尺度的空间周期, 相比于传统的通过两束激光在稀薄等离子体中干涉产生的激光波长尺度 (微米) 的等离子体光栅, 这一发现对于x波段的强光操控有着潜在的应用价值.

本文引用格式

袁丰毅 , 王加祥 , 黄渊凌 , 祝旭忠 . 基于强激光场与固体靶相互作用的等离子体光栅产生新机制研究[J]. 华东师范大学学报(自然科学版), 2023 , 2023(4) : 86 -93 . DOI: 10.3969/j.issn.1000-5641.2023.04.009

Abstract

Plasma gratings are important in physics because they do not break down in strong fields. Using particle-in-cell (PIC) simulations, a new mechanism to generate plasma grating was developed based on the interactions between picosecond intense laser pulses (the magnitude of $ I $ is ${10}^{15}\;\mathrm{W}/{\mathrm{c}\mathrm{m}}^{2}$ ) and overcritical solid-density plasma (particle number density $n \approx 10{n}_{\rm{c}}$ ). This plasma grating results from the interference of plasma waves excited by strong laser fields in solids. Hence, one laser beam is sufficient for generating the gratings. The method produced a nanometer spatial period, which is significantly different from the micrometer spatial period produced by traditional methods that use two counter-propagating lasers in gas-density plasma. This finding may be useful for manipulating strong x-band frequency laser fields.

参考文献

1 STRICKLAND D, MOUROU G. Compression of amplified chirped optical pulses. Optics Communications, 1985, 56 (3): 219- 221.
2 LICHTERS R, MEYER-TER-VEHN J, PUKHOV A. Short-pulse laser harmonics from oscillating plasma surfaces driven at relativistic intensity. Physics of Plasmas, 1996, 3 (9): 3425- 3437.
3 VON DER LINDE D, ENGERS T, JENKE G, et al. Generation of high-order harmonics from solid surfaces by intense femtosecond laser pulses. Physical Review A, 1995, 52 (1): R25- R27.
4 VON DER LINDE D, RZàZEWSKI K. High-order optical harmonic generation from solid surfaces. Applied Physics B, 1996, 63 (5): 499- 506.
5 PLAJA L, ROSO L. Analytical description of a plasma diffraction grating induced by two crossed laser beams. Physical Review E, 1997, 56 (6): 7142- 7146.
6 ZHANG P, SALEH N, CHEN S, et al. Laser-energy transfer and enhancement of plasma waves and electron beams by interfering high-intensity laser pulses. Physical Review Letters, 2003, 91 (22): 225001.
7 YU L L, SHENG Z M, ZHANG J. Plasma Bragg density gratings produced by optical-field ionization. Journal of the Optical Society of America B, 2009, 26 (11): 2095- 2100.
8 CHEN H Y, YIN Y, TIAN C L, et al. Moving electron density gratings induced in the beat-wave field of two counterpropagating laser pulses. Physics of Plasmas, 2010, 17 (8): 083112.
9 袁韬. 强激光场中等离子体光栅PIC模拟研究 [D]. 上海: 华东师范大学, 2013.
10 ARBER T D, BENNETT K, BRADY C S, et al. Contemporary particle-in-cell approach to laser-plasma modelling. Plasma Physics and Controlled Fusion, 2015, 57 (11): 113001.
11 YAN X Q, LIN C, SHENG Z M, et al. Generating high-current monoenergetic proton beams by a circularly polarized laser pulse in the phase-stable acceleration regime. Physical Review Letters, 2008, 100 (13): 135003.
文章导航

/