数据库系统

基于持久化内存和共享缓存架构的高性能数据库

  • 王聪聪 ,
  • 胡卉芪
展开
  • 华东师范大学 数据科学与工程学院, 上海 200062

收稿日期: 2023-07-25

  录用日期: 2023-07-25

  网络出版日期: 2023-09-20

基金资助

上海市自然科学基金(23ZR1418300)

Persistent memory- and shared cache architecture-based high-performance database

  • Congcong WANG ,
  • Huiqi HU
Expand
  • School of Data Science and Engineering, East China Normal University, Shanghai 200062, China

Received date: 2023-07-25

  Accepted date: 2023-07-25

  Online published: 2023-09-20

摘要

云原生数据库的崛起, 使得共享缓存架构再度受到重视. 虽然共享缓存架构能够有效地解决多个读写节点间的缓存一致性问题, 但其他问题仍然存在, 例如持久化速度缓慢、维护缓存目录的延迟高、时间戳瓶颈等. 针对上述问题, 提出了一种基于共享缓存架构, 并结合新型硬件—持久化内存的解决方案, 从而构建了一个包括内存层、持久化内存层、存储层的三层共享架构数据库—TampoDB. 基于此架构, 重新设计了事务的执行流程, 并对时间戳和目录进行了优化, 以解决上述问题. 实验结果表明, TampoDB有效地提高了事务的持久化速度.

本文引用格式

王聪聪 , 胡卉芪 . 基于持久化内存和共享缓存架构的高性能数据库[J]. 华东师范大学学报(自然科学版), 2023 , 2023(5) : 1 -10 . DOI: 10.3969/j.issn.1000-5641.2023.05.001

Abstract

The upsurge in cloud-native databases has been drawing attention to shared architectures. Although a shared cache architecture can effectively address cache consistency issues among multiple read-write nodes, problems still exist, such as slow persistence speed, high latency in maintaining cache directories, and timestamp bottlenecks. To address these issues, this study proposes a shared cache architecture-based solution that is combined with novel persistent memory hardware, to realize a three-layer shared architecture database—TampoDB, which includes memory, persistent memory, and storage layers. The transaction execution process was redesigned based on this architecture with optimized timestamps and directories, thereby resolving the aforementioned problems. Experimental results show that TampoDB effectively enhances the persistence speed of transactions.

参考文献

1 VERBITSKI A, GUPTA A, SAHA D, et al. Amazon aurora: Design considerations for high throughput cloud-native relational databases [C]// Proceedings of the 2017 ACM International Conference on Management of Data. 2017: 1041-1052.
2 CAO W, ZHANG Y, YANG X, et al. Polardb serverless: A cloud native database for disaggregated data centers [C]// Proceedings of the 2021 International Conference on Management of Data. 2021: 2477-2489.
3 CORBETT J C, DEAN J, EPATEIN M, et al.. Spanner: Google’s globally distributed database. ACM Transactions on Computer Systems (TOCS), 2013, 31 (3): 1- 22.
4 GUAY PAZ J R. Introduction to Azure Cosmos DB [M]// Microsoft Azure Cosmos DB Revealed: A Multi-model Database Designed for the Cloud. California: Apress Berkeley, 2018: 1-23.
5 ANTONOPOULOS P, BUDOVSKI A, DIACONU C, et al. Socrates: The new SQL server in the cloud [C]// Proceedings of the 2019 International Conference on Management of Data. 2019: 1743-1756.
6 ZIEGLER T, BINNIG C, LEIS V. ScaleStore: A fast and cost-efficient storage engine using DRAM, NVMe, and RDMA [C]// Proceedings of the 2022 International Conference on Management of Data. 2022: 685-699.
7 LAHIRI T, SRIHARI V, CHAN W, et al. Cache fusion: Extending shared-disk clusters with shared caches [C]// Proceedings of the 27th VLDB Conference. 2001: 683-686.
8 ZAMANIAN E, BINNIG C, KRASKA T, et al.. The end of a myth: Distributed transactions can scale. Proceedings of the VLDB Endowment, 2017, 10 (6): 685- 696.
9 ASTRAHAN M M, BLASGEN M W, CHAMBERLIN D D, et al.. System R: Relational approach to database management. ACM Transactions on Database Systems (TODS), 1976, 1 (2): 97- 137.
10 LARDINOIS F. Google Cloud launches AlloyDB, a new fully managed PostgreSQL database service [EB/OL]. [2023-05-30]. https://cloud.google.com/alloydb.
11 MONGODB INC. MongoDB: A source-available cross-platform document-oriented database program [EB/OL]. [2023-05-30]. https://www.mongodb.com.
12 LAKSHMAN A, MALIK P.. Cassandra: A decentralized structured storage system. ACM SIGOPS Operating Systems Review, 2010, 44 (2): 35- 40.
文章导航

/