收稿日期: 2023-06-30
录用日期: 2023-07-22
网络出版日期: 2023-09-20
基金资助
国家自然科学基金(61877018); 上海市大数据管理系统工程研究中心开放基金(HYSY21022)
Research on Autoformer-based electricity load forecasting and analysis
Received date: 2023-06-30
Accepted date: 2023-07-22
Online published: 2023-09-20
新一代电网是未来智能电网发展的主要方向, 而电力负荷精准预测是智能电网的一项重要基础工作. 为了提高智能电力系统负荷预测的精确度, 本文基于自相关机制的预测模型Autoformer, 对负荷数据集进行了特性分析, 在原模型中加入特征提取层, 从编码层数、解码层数、学习率和批量大小等方面优化了模型参数, 实现了周期灵活的负荷预测. 在真实数据集上进行了实验和分析, 实验结果表明, 本文模型在预测效果上表现更好, MAE (mean absolute error)和MSE (mean squared error)分别为0.2512和0.1915, 决定系数为0.9832. 与其他方法相比, 本文方法负荷预测效果更好.
关键词: Autoformer; 电力负荷预测; 自相关机制; 特征提取; 负荷特性
唐利涛 , 张智勇 , 陈俊 , 许林娜 , 钟佳晨 , 袁培森 . 基于Autoformer的电力负荷预测与分析研究[J]. 华东师范大学学报(自然科学版), 2023 , 2023(5) : 135 -146 . DOI: 10.3969/j.issn.1000-5641.2023.05.012
Next-generation power grids is the main direction of future smart grid development, and the accurate prediction of power loads is an important basic task of smart grids. To improve the accuracy of load prediction in smart power systems, this work characterized the load dataset based on an Autoformer, a prediction model with an autocorrelation mechanism; adds a feature extraction layer to the original model; optimized the model parameters in terms of the number of coding layers, decoding layers, learning rate, and batch size; and achieved cycle-flexible load prediction. The experimental results show that the model performs better in prediction, with an MAE, MSE, and coefficient of determination of 0.2512, 0.1915, and 0.9832, respectively. Compared with other methods, this method has better load prediction results.
1 | 刘洲红.. “双碳”背景下新型电力系统规划新问题及主要技术. 科技创新导报, 2022, 19 (8): 24- 26. |
2 | 方嘉祥.. 智能电网信息安全及新技术研究综述. 科技与创新, 2022, (4): 21- 25. |
3 | 马得银, 孙波, 刘澈.. 基于天气信息的短期冷热电负荷联合预测方法. 电网技术, 2021, 45 (3): 1015- 1022. |
4 | 杨书强, 王涛, 檀晓林, 等.. 基于长短期记忆的图像化短期电力负荷预测方法. 全球能源互联网, 2023, 6 (3): 282- 288. |
5 | 王峰.. 基于IPSO算法的短期电力负荷预测模型研究. 自动化仪表, 2023, 44 (4): 22- 26. |
6 | 李明华, 汪长智, 李会娟.. 基于随机森林的电网基建工程数据自适应整合系统设计. 电子设计工程, 2023, 31 (8): 147- 151. |
7 | 林佳亮, 李暖群, 黄庆键.. 基于支持向量机方法的短期负荷预测研究. 自动化应用, 2016, (12): 150- 152. |
8 | 姜山, 周秋鹏, 董弘川, 等.. 考虑数据周期性及趋势性特征的长期电力负荷组合预测方法. 电测与仪表, 2022, 59 (6): 98- 104. |
9 | 宋海明.. 负荷特性对电力系统电压稳定性的影响. 自动化应用, 2023, 64 (5): 212- 214. |
10 | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need [C]// 31st Conference on Neural Information Processing Systems (NIPS 2017). Long Beach, CA, USA, 2017. |
11 | ZHOU H, ZHANG S, PENG J, et al. Informer: Beyond efficient transformer for long sequence time-series forecasting [C]// Proceedings of the AAAI conference on artificial intelligence. 2021, 35(12): 11106-11115. |
12 | 常月, 侯元波, 谭奕舟, 等.. 基于自注意力机制的多模态场景分类. 复旦学报(自然科学版), 2023, 62 (1): 46- 52. |
13 | WU H, XU J, WANG J, et al.. Autoformer: Decomposition transformers with auto-correlation for long-term series forecasting. Advances in Neural Information Processing Systems, 2021, 34, 22419- 22430. |
14 | 张涛. 基于区域动态电碳因子的企业低碳用电研究 [D]. 杭州: 浙江大学, 2023. |
15 | 李烈. 机器学习方法在淮河水位预测中的应用 [D]. 安徽 蚌埠: 安徽财经大学, 2022. |
16 | 庞传军, 余建明, 冯长有, 等.. 基于LSTM自动编码器的电力负荷聚类建模及特性分析. 电力系统自动化, 2020, 44 (23): 57- 63. |
17 | 邱子川, 罗丽, 彭润海, 等.. 基于负荷特性的用电分析系统设计. 电子技术, 2023, 52 (2): 216- 217. |
18 | 黄薇, 温蜜, 张照贝. 考虑用户用电行为聚类的电力负荷预测方法[J]. 计算机仿真. 2022, 39(12): 148-153. |
19 | 樊倩男, 刘树勇, 蔡云帆, 等.. 基于Transformer的稳健电力负荷预测. 电力大数据, 2022, 25 (5): 19- 27. |
20 | 朱嘉奕, 宋自根.. 单调激活函数惯性项神经耦合系统的混沌共存. 力学季刊, 2023, 44 (1): 38- 44. |
21 | 殷家伟, 姜宗梁, 徐凯宏.. 数据拟合算法在受电弓检测误差补偿中的应用. 传感器与微系统, 2023, 42 (2): 157- 160. |
22 | 潘锦业, 王苗苗, 阚威, 等.. 基于Adam优化算法和长短期记忆神经网络的锂离子电池荷电状态估计方法. 电气技术, 2022, 23 (4): 25- 30. |
23 | 罗萍, 王涛, 彭云奉.. 基于多层特征融合的多光谱行人检测方法. 计算机工程与设计, 2023, 44 (5): 1579- 1585. |
/
〈 |
|
〉 |