数据分析

基于空间域和频率域方法的烟雾检测

  • 盛连军 ,
  • 汤致轩 ,
  • 茅晓亮 ,
  • 白帆 ,
  • 黄定江
展开
  • 1. 国网上海市电力公司 奉贤供电公司, 上海 201499
    2. 华东师范大学 数据科学与工程学院, 上海 200062
    3. 上海深其深网络科技有限公司, 上海 200439

收稿日期: 2023-07-01

  网络出版日期: 2023-09-20

基金资助

国家自然科学基金(62072185)

Smoke detection based on spatial and frequency domain methods

  • Lianjun SHENG ,
  • Zhixuan TANG ,
  • Xiaoliang MAO ,
  • Fan BAI ,
  • Dingjiang HUANG
Expand
  • 1. Fengxian Power Supply Company, State Grid Shanghai Electric Power Company, Shanghai 201499, China
    2. School of Data Science and Engineering, East China Normal University, Shanghai 200062, China
    3. Shanghai Thinking Things Network Technology Co. Ltd., Shanghai 200439, China

Received date: 2023-07-01

  Online published: 2023-09-20

摘要

变电站等工业场景中, 基于监控视频的视觉烟雾检测已被作为一种新的环境辅控方式, 用于辅助或代替基于烟雾传感器的烟雾检测. 但是, 工业应用中要求视觉烟雾检测算法在保证误检率低的基础上, 要尽可能降低漏检率. 针对该问题, 基于空间域和频率域方法, 提出了一种新的烟雾检测算法, 分别在空间域和频率域进行烟雾检测: 在空间域上, 在提取烟雾运动特性的基础上, 设计了提取烟雾“蒙版特性”的方法, 以保证较低的漏检率; 在频率域上, 分别结合滤波模块和神经网络模块, 以进一步降低误检率. 最后通过融合后处理策略, 得到最终检测结果, 从而平衡漏检率和误检率. 在测试数据集上, 所提烟雾检测算法的误检率达到了0.053, 漏检率达到了0.113, 实现了误检率和漏检率的良好平衡. 所提检测方法适用于变电站等实际工业场景的烟雾检测.

本文引用格式

盛连军 , 汤致轩 , 茅晓亮 , 白帆 , 黄定江 . 基于空间域和频率域方法的烟雾检测[J]. 华东师范大学学报(自然科学版), 2023 , 2023(5) : 147 -163 . DOI: 10.3969/j.issn.1000-5641.2023.05.013

Abstract

In industrial scenarios such as substations, video-based visual smoke detection has been adopted as a new environmental monitoring method to assist or replace smoke sensors. However, in industrial applications, visual smoke detection algorithms are required to maintain a low false detection rate while minimizing the missed detection rate. To address this, this study proposes a smoke detection algorithm based on spatial and frequency domain methods, which perform smoke detection in both domains. In the spatial domain, in addition to extracting smoke motion characteristics, this study designed a method for extracting smoke mask characteristics, which effectively ensures a low missed detection rate. In the frequency domain, this study combined filtering and neural network modules to further reduce the false detection rate. Finally, a fusion domain post-processing strategy was designed to obtain the final detection results. In experiments conducted on a test dataset, the smoke detection algorithm achieved a false detection rate of 0.053 and missed detection rate of 0.113, demonstrating a good balance between false alarms and missed detections, which is suitable for smoke detection in substation industrial scenes.

参考文献

1 李孟超, 王允平, 李献伟, 等.. 智能变电站及技术特点分析. 电力系统保护与控制, 2010, 38 (18): 59- 62,79.
2 唐慧明, 张健.. 变电站远程图像监控系统设计. 电力系统自动化, 2001, (7): 56- 58.
3 宋伟, 王玉平, 张文杰, 等.. 基于颜色与运动特征的变电站实时烟雾检测. 传感器与微系统, 2015, 34 (12): 127- 130.
4 T?REYIN B U, DEDEO?LU Y, CETIN A E. Wavelet based real-time smoke detection in video [C]// 2005 13th European Signal Processing Conference. IEEE, 2005. https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7077943.
5 YU C Y, ZHANG Y M, FANG J, et al. Texture analysis of smoke for real-time fire detection [C]// 2009 2nd International Workshop on Computer Science and Engineering. IEEE, 2009: 511-515. DOI: 10.1109/WCSE.2009.864
6 ALAMGIR N, NGUYEN K, CHANDRAN V, et al.. Combining multi-channel color space with local binary co-occurrence feature descriptors for accurate smoke detection from surveillance videos. Fire Safety Journal, 2018, 102, 1- 10.
7 FRIZZI S, KAABI R, BOUCHOUICHA M, et al. Convolutional neural network for video fire and smoke detection [C]// IECON 2016 - 42nd Annual Conference of the IEEE Industrial Electronics Society. IEEE, 2016: 877-882.
8 赵丽宏, 付雪, 肖博宇, 等.. 基于卷积神经网络的森林火灾烟雾探测算法研究. 中国新技术新产品, 2019, (12): 23- 24.
9 GAGLIARDI A, DE GIOIA F, SAPONARA S.. A real-time video smoke detection algorithm based on Kalman filter and CNN. Journal of Real-Time Image Processing, 2021, 18, 2085- 2095.
10 VALIKHUJAEV Y, ABDUSALOMOV A, CHO Y I.. Automatic fire and smoke detection method for surveillance systems based on dilated CNNs. Atmosphere, 2020, 11 (11): 1241.
11 WU Y L, CHEN M H, WO Y, et al.. Video smoke detection base on dense optical flow and convolutional neural network. Multimedia Tools and Applications, 2021, 80, 35887- 35901.
12 MARDANI K, VRETOS N, DARAS P.. Transformer-based fire detection in videos. Sensors, 2023, 23 (6): 3035.
13 ALMEIDA J S, HUANG C, NOGUEIRA F G, et al.. EdgeFireSmoke: A novel lightweight cnn model for real-time video fire–smoke detection. IEEE Transactions on Industrial Informatics, 2022, 18 (11): 7889- 7898.
14 CHEN X, XUE Y P, ZHU Y L, et al.. A novel smoke detection algorithm based on improved mixed Gaussian and YOLOv5 for textile workshop environments. IET Image Processing, 2023, 17, 1991- 2004.
15 DE VEN?NCIO P V A B, CAMPOS R J, REZENDE T M, et al.. A hybrid method for fire detection based on spatial and temporal patterns. Neural Computing and Applications, 2023, 35 (13): 9349- 9361.
16 WU Z S, XUE R, LI H.. Real-time video fire detection via modified YOLOv5 network model. Fire Technology, 2022, 58, 2377- 2403.
17 YUAN F N, SHI Y, ZHANG L, et al.. A cross-scale mixed attention network for smoke segmentation. Digital Signal Processing, 2023, 134, 103924.
18 AHN Y, CHOI H, KIM B S.. Development of early fire detection model for buildings using computer vision-based CCTV. Journal of Building Engineering, 2023, 65, 105647.
19 HUO Y N, ZHANG Q X, JIA Y, et al.. A deep separable convolutional neural network for multiscale image-based smoke detection. Fire Technology, 2022, 58, 1445- 1468.
20 PICCARDI M. Background subtraction techniques: A review [C]// 2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No. 04CH37583). IEEE, 2004: 3099-3104.
21 FARNEB?CK G. Two-frame motion estimation based on polynomial expansion [C]// Image Analysis, SCIA 2003, Lecture Notes in Computer Science, vol 2749. Berlin: Springer, 2003: 363-370.
22 SINGLA N.. Motion detection based on frame difference method. International Journal of Information & Computation Technology, 2014, 4 (15): 1559- 1565.
23 COOLEY JW, LEWIS PA, WELCH PD.. The fast Fourier transform and its applications. IEEE Transactions on Education, 1969, 12 (1): 27- 34.
24 AHMED N, NATARAJAN T, RAO K R.. Discrete cosine transform. IEEE Transactions on Computers, 1974, C-23 (1): 90- 93.
25 ZHANG D S. Fundamentals of Image Data Mining: Analysis, Features, Classification and Retrieval [M]. 2nd ed. Cham : Springer , 2019: 45-54.
26 JI S W, XU W, YANG M, et al.. 3D convolutional neural networks for human action recognition. IEEE Transactions on Tattern Analysis and Machine Intelligence, 2013, 35 (1): 221- 231.
27 YUAN F N. Video smoke detection [EB/OL]. (2011-08-28)[2023-04-03]. http://staff.ustc.edu.cn/ ~ yfn/vsd.html.
文章导航

/