计算机科学

面向骑行地图推断的轨迹数据质量提升方法

  • 陈杰 ,
  • 沈文怡 ,
  • 吴问宇 ,
  • 毛嘉莉
展开
  • 华东师范大学 数据科学与工程学院, 上海 200062

收稿日期: 2022-07-06

  网络出版日期: 2023-11-23

基金资助

国家自然科学基金 (62072180)

Method for improving the quality of trajectory data for riding-map inference

  • Jie CHEN ,
  • Wenyi SHEN ,
  • Wenyu WU ,
  • Jiali MAO
Expand
  • School of Data Science and Engineering, East China Normal University, Shanghai 200062, China

Received date: 2022-07-06

  Online published: 2023-11-23

摘要

由于定位设备误差、非机动车骑行习惯等因素的影响, 骑行轨迹存在数据异常与定位信息缺失等质量问题, 为骑行地图推断和骑行路径规划等基于轨迹的应用带来了极大挑战. 为解决上述问题, 提出了一个面向骑行地图推断的轨迹数据质量提升框架, 包括网格索引构建、异常轨迹点的消除、徘徊轨迹段的消除、违章轨迹段的消除、漂移轨迹段的校准以及缺失轨迹的恢复等. 在真实非机动车骑行轨迹数据集上进行了对比实验和消融实验, 实验结果验证了所提方案对于提升骑行地图推断的精度优于现有方法.

本文引用格式

陈杰 , 沈文怡 , 吴问宇 , 毛嘉莉 . 面向骑行地图推断的轨迹数据质量提升方法[J]. 华东师范大学学报(自然科学版), 2023 , 2023(6) : 14 -27 . DOI: 10.3969/j.issn.1000-5641.2023.06.002

Abstract

The trajectory optimization of cycling is hindered by the errors of positioning equipment, riding habits of non-motor vehicles, and other factors. It leads to quality problems, such as abnormal data and missing positioning information in the riding trajectory, impacting the application of trajectory-based riding-map inference and riding-path planning. To solve these problems, this paper creates a framework for improving the quality of cycling-trajectory data, based on the construction of a grid index, screening of abnormal trajectory points, elimination of wandering trajectory segments, elimination of illegal trajectory segments, calibration of drift trajectory segments, and recovery of missing trajectory. Comparative and ablation experiments are conducted by using a real non-motor-vehicle cycling-trajectory dataset. The experimental results verify that the proposed method improves the accuracy of cycling-map inference.

参考文献

1 SHAN Z Q, WU H, SUN W W, et al. COBWEB: A robust map update system using GPS trajectories [C]// Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing. 2015: 927-937.
2 CHAO P F, HUA W, ZHOU X F.. Trajectories know where map is wrong: An iterative framework for map-trajectory co-optimisation. World Wide Web, 2020, 23, 47- 73.
3 CHAO P F, HUA W, ZHOU X F. An iterative map-trajectory co-optimisation framework based on map-matching and map update [C]// Database Systems for Advanced Applications. 2019: 305-309.
4 ZHAO L S, MAO J L, PU M, et al. Automatic calibration of road intersection topology using trajectories [C]// 2020 IEEE 36th International Conference on Data Engineering. 2020: 1633-1644.
5 QING R T, LIU Y Z, ZHAO Y J, et al. Using feature interaction among GPS data for road intersection detection [C]// Proceedings of the 2nd International Workshop on Human-centric Multimedia Analysis. 2021: 31-37.
6 HE L, NIU X Z, CHEN T, et al. Spatio-temporal trajectory anomaly detection based on common sub-sequence [J]. Applied Intelligence, 2022, 52: 7599-7621.
7 CAO L L, KRUMM J. From GPS traces to a routable road map [C]// Proceedings of the ACM International Symposium on Advances in Geographic Information Systems. 2009: 3-12.
8 CHEN C, LU C W, HUANG Q X, et al. City-scale map creation and updating using GPS collections [C]// Knowledge Discovery and Data Mining. 2016: 1465-1474.
9 SCHROEDL S, WAGGSTAFF K, ROGERS S, et al. Mining GPS traces for map refinement [J]. Data Mining and Knowledge Discovery, 2004, 9: 59-87.
10 HOTEIT S, SECCI S, SOBOLEVSKY S, et al. Estimating human trajectories and hotspots through mobile phone data [J]. Computer Networks, 2014, 64: 296-307.
11 CHEN Z B, SHEN H T, ZHOU X F. Discovering popular routes from trajectories [C]// 2011 IEEE 27th International Conference on Data Engineering. 2011: 900-911.
12 WEI L Y, ZHENG Y, PENG W C. Constructing popular routes from uncertain trajectories[C]// Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2012: 195-203.
13 SU H, ZHENG K, HUANG J M, et al. Calibrating trajectory data for spatio-temporal similarity analysis [J]. The International Journal on Very Large Data Bases, 2015, 24: 93-116.
14 WANG J Y, WU N, LU X X, et al.. Deep trajectory recovery with fine-grained calibration using Kalman Filter. IEEE Transactions on Knowledge and Data Engineering, 2021, 33 (3): 921- 934.
15 CHAO P F, HUA W, MAO R, et al. A survey and quantitative study on map inference algorithms from GPS trajectories [J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(1): 15-28.
16 LI H F, KULIK L, RAMAMOHANARAO K. Automatic generation and validation of road maps from GPS trajectory data sets [C]// Proceedings of the 25th ACM International on Conference on Information and Knowledge Management. 2016: 1523-1532.
17 HUANG Y R, XIAO Z, YU X Y, et al. Road network construction with complex intersections based on sparsely sampled private car trajectory data [J]. ACM Transactions on Knowledge Discovery from Data, 2019, 13(3): 35.
18 LYU H Y, PFOSER D, SHENG Y H. Movement-aware map construction [J]. International Journal of Geographical Information Science, 2021, 35(6): 1065-1093.
文章导航

/