化学化工

可降解材料生物降解率的检测方法比较

  • 赵伟 ,
  • 李宇 ,
  • 张玮 ,
  • 朱科桦 ,
  • 周珂 ,
  • 吕晴 ,
  • 刘诗娴 ,
  • 葛振鸣
展开
  • 1. 华东师范大学 河口海岸学国家重点实验室, 上海 200241
    2. 3M中国有限公司 中国研发中心, 上海 200233

收稿日期: 2022-12-02

  录用日期: 2023-04-19

  网络出版日期: 2023-11-23

基金资助

上海市科委项目(22DZ1209600); 华东师范大学校企合作项目(ECNU-3M)

Comparative evaluations of testing methods for the biodegradation rates of degradable materials

  • Wei ZHAO ,
  • Yu LI ,
  • Wei ZHANG ,
  • Kehua ZHU ,
  • Ke ZHOU ,
  • Qing LYU ,
  • Shixian LIU ,
  • Zhenming GE
Expand
  • 1. State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
    2. 3M China R&D Center, 3M China Co. Ltd., Shanghai 200233, China

Received date: 2022-12-02

  Accepted date: 2023-04-19

  Online published: 2023-11-23

摘要

基于现行的材料降解率测定标准及特定微生物的降解性能, 设计了4种材料降解率的检测方法, 即两种标准方法 (接种物: 腐熟堆肥、蛭石 $+ $ 腐熟堆肥浸提液) 和两种实验方法 (接种物: 蛭石 $+ $ 芽孢杆菌、蛭石 $+ $ 嗜热菌). 采用生产环保胶带所用的原纸、塑料薄膜 (主要成分为polylactic acid, PLA) 和胶带成品作为受测材料, 对比不同处理方法下材料降解性能的效率. 结果表明, 在60 d的实验周期中, 原纸和PLA薄膜在4种方法处理下均呈现快速降解. 然而, 胶带成品降解率在腐熟堆肥、蛭石 $+ $ 腐熟堆肥浸提液处理下上升缓慢; 在蛭石 $+ $ 芽孢杆菌处理下略高; 在蛭石 $+ $ 嗜热菌处理下上升速率显著高于其他处理方法 (约1.7 ~ 7.5倍). 添加微生物菌剂尤其是嗜热菌, 能有效提升产品降解率的测定效率. 因此, 优化降解接种物的方法可提高材料降解率的测试效率, 有利于企业缩短可降解材料的研发及生产周期.

本文引用格式

赵伟 , 李宇 , 张玮 , 朱科桦 , 周珂 , 吕晴 , 刘诗娴 , 葛振鸣 . 可降解材料生物降解率的检测方法比较[J]. 华东师范大学学报(自然科学版), 2023 , 2023(6) : 158 -167 . DOI: 10.3969/j.issn.1000-5641.2023.06.015

Abstract

Herein, based on existing standards for the measurements of material degradation rates and the degradation abilities of microorganisms, four methods were designed to determine material degradation rates. These four methods included two standard methods (inoculums: composting, vermiculite+composting leachate) and two experimental methods (inoculums: vermiculite+Bacillus, vermiculite+thermophilic bacteria). For this, the raw paper and plastic film (polylactic acid, PLA) components of environmentally friendly tape, as well as the finished tapes, were used as test materials to compare the material degradation rates using the above methods. Throughout the 60-day test cycle, both the PLA films and raw paper presented high degradation rates according to the four methods. The degradation rate of finished tape products increased gradually under the composting and vermiculite+composting leachate treatment and marginally rapidly under the vermiculite+Bacillus treatment. Additionally, under the vermiculite + thermophilic bacteria treatment method, the finished tape materials displayed a markedly higher degradation rate than that produced by other methods (roughly 1.7 ~ 7.5 times). Thus, the addition of microorganisms, particularly thermophilic bacteria, enhances the testing efficiency of material biodegradation rates. Therefore, we suggest that the optimization of degradation cultures can improve the testing efficiency of material degradation parameters, allowing manufacturing enterprises to shorten the research and development cycles of biodegradable products.

参考文献

1 ZHANG K, HAMIDIAN A H, TUBIC A, et al.. Understanding plastic degradation and microplastic formation in the environment: A review. Environmental Pollution, 2021, 274, 116554.
2 李昕玥, 刘卓苗, 薛润泽, 等.. 典型塑料的生物降解及其降解机理. 科学通报, 2021, 66 (20): 2573- 2589.
3 LIM B K H, THIAN E S.. Biodegradation of polymers in managing plastic waste - A review. Science of the Total Environment, 2022, 813, 151880.
4 KOTOVA I B, TAKTAROVA Y V, TSAVKELOVA E A, et al.. Microbial degradation of plastics and approaches to make it more efficient. Microbiology, 2021, 90 (6): 671- 701.
5 SKARIYACHAN S, TASKEEN N, KISHORE A P, et al.. Recent advances in plastic degradation - From microbial consortia-based methods to data sciences and computational biology driven approaches. Journal of Hazardous Materials, 2022, 426, 128086.
6 SKARIYACHAN S, PATIL A A, SHANKAR A, et al.. Enhanced polymer degradation of polyethylene and polypropylene by novel thermophilic consortia of Brevibacillus sps. and Aneurinibacillus sp. screened from waste management landfills and sewage treatment plants . Polymer Degradation and Stability, 2018, 149, 52- 68.
7 轻工业塑料加工应用研究所, 宁波天安生物材料有限公司, 内蒙古蒙西高新技术集团有限责任公司, 等. 受控堆肥条件下材料最终需氧生物分解能力的测定 采用测定释放的二氧化碳的方法 第1部分: 通用方法: GB/T 19277.1-2011 [S]. 北京: 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会, 2011: 24
8 于镜华, 季君晖, 周玉杨.. 受控堆肥生物降解法测定全生物降解塑料(PBS)性能. 化工新型材料, 2007, (2): 76- 77.
9 翁云煊, 李字义, 刘万蝉, 等.. 受控堆肥条件下材料需氧生物分解能力试验方法的研究. 中国塑料, 2003, (9): 80- 84.
10 VAVERKOVá M, ADAMCOVá D, KOTOVICOVá J, et al.. Evaluation of biodegradability of plastics bags in composting conditions. Ecological Chemistry and Engineering S, 2014, 21 (1): 45- 57.
11 翁云宣, 杨惠娣, 舒继岗, 等.. 材料生物降解能力评价方法的研究. 中国塑料, 2005, (4): 82- 87.
12 谢淑华, 邓鸿英, 陈紫饶, 等.. 聚乳酸膜袋在受控堆肥条件下的生物降解测试. 广东蚕业, 2019, 53 (5): 28- 29.
13 扈蓉, 陈丽琼, 黄开胜, 等.. PLA在受控堆肥条件下的生物降解行为研究. 塑料科技, 2012, 40 (8): 68- 71.
14 RADDADI N, FAVA F.. Biodegradation of oil-based plastics in the environment: Existing knowledge and needs of research and innovation. Science of the Total Environment, 2019, 679, 148- 158.
15 AL HOSNI A S, PITTMAN J K, ROBSON G D.. Microbial degradation of four biodegradable polymers in soil and compost demonstrating polycaprolactone as an ideal compostable plastic. Waste Management, 2019, 97, 105- 114.
16 KIM H S, YANG H S, KIM H J.. Biodegradability and mechanical properties of agro-flour-filled polybutylene succinate biocomposites. Journal of Applied Polymer Science, 2005, 97 (4): 1513- 1521.
17 SHABBIR S, FAHEEM M, ALI N, et al.. Periphytic biofilm: An innovative approach for biodegradation of microplastics. Science of the Total Environment, 2020, 717, 137064.
18 TRIBEDI P, DEY S.. Pre-oxidation of low-density polyethylene (LDPE) by ultraviolet light (UV) promotes enhanced degradation of LDPE in soil. Environmental Monitoring and Assessment, 2017, 189 (12): 1- 8.
19 ARKATKAR A, ARUTCHELVI J, BHADURI S, et al.. Degradation of unpretreated and thermally pretreated polypropylene by soil consortia. International Biodeterioration & Biodegradation, 2009, 63 (1): 106- 111.
20 ARAVINTHAN A, ARKATKAR A, JUWARKAR A A, et al.. Synergistic growth of Bacillus and Pseudomonas and its degradation potential on pretreated polypropylene . Preparative Biochemistry & Biotechnology, 2016, 46 (2): 109- 115.
21 PERCIVAL ZHANG Y H, HIMMEL M E, MIELENZ J R.. Outlook for cellulase improvement: Screening and selection strategies. Biotechnology Advances, 2006, 24 (5): 452- 481.
22 CHEN K, LIU X, LONG L, et al.. Cellobiose dehydrogenase from Volvariella volvacea and its effect on the saccharification of cellulose . Process Biochemistry, 2017, 60, 52- 58.
23 牛佳钰. 秸秆源木质纤维素在好氧堆肥化中的降解研究 [D]. 江苏 无锡: 江南大学, 2022.
24 QI X, REN Y, WANG X.. New advances in the biodegradation of Poly(lactic) acid. International Biodeterioration & Biodegradation, 2017, 117, 215- 223.
25 刘芳卫, 赵真真, 黄亚楠, 等.. 新型环保胶带的研究思考. 绿色包装, 2021, (1): 32- 35.
26 MAITY S, BANERJEE S, BISWAS C, et al.. Functional interplay between plastic polymers and microbes: A comprehensive review. Biodegradation, 2021, 32 (5): 487- 510.
27 梅雪立, 梁英梅, 田呈明, 等.. 聚丁二酸丁二醇酯高效降解菌的筛选及降解特性. 微生物学通报, 2011, 38 (3): 348- 354.
28 吕美英, 李振欣, 杜敏, 等.. 培养基对微生物腐蚀的影响. 中国腐蚀与防护学报, 2021, 41 (6): 757- 764.
29 NOVOTNY ?, MALACHOVá K, ADAMUS G, et al.. Deterioration of irradiation/high-temperature pretreated, linear low-density polyethylene (LLDPE) by Bacillus amyloliquefaciens . International Biodeterioration & Biodegradation, 2018, 132, 259- 267.
30 HAYASE N, YANO H, KUDOH E, et al.. Isolation and characterization of poly (butylene succinate-co-butylene adipate)-degrading microorganism. Journal of Bioscience and Bioengineering, 2004, 97 (2): 131- 133.
31 SUBRAMANI M, SEPPERUMAL U.. GCMS Analysis of Pseudomonas sp., mediated degradation of polystyrene . Annals of Biological Research, 2017, 8 (3): 8- 11.
32 VIVI V K, MARTINS-FRANCHETTI S M, ATTILI-ANGELIS D.. Biodegradation of PCL and PVC: Chaetomium globosum (ATCC 16021) activity . Folia Microbiologica, 2019, 64 (1): 1- 7.
33 MOUAFO TAMNOU E B, TAMSA ARFAO A, NOUGANG M E, et al.. Biodegradation of polyethylene by the bacterium Pseudomonas aeruginosa in acidic aquatic microcosm and effect of the environmental temperature . Environmental Challenges, 2021, (3): 100056.
34 陈泽伟, 谢胜佳, 黄可萱, 等.. 嗜热艾登短芽孢杆菌对聚乙烯醇的降解性能及机制. 湖南生态科学学报, 2022, 9 (2): 1- 9.
35 FEITKENHAUER H, MüLLER R.. Degradation of polycyclic aromatic hydrocarbons and long chain alkanes at 6070 C by Thermus and Bacillus spp. . Biodegradation, 2003, 14 (6): 367- 372.
36 ZHOU J F, GAO P K, DAI X H, et al.. Heavy hydrocarbon degradation of crude oil by a novel thermophilic Geobacillus stearothermophilus strain A-2 . International Biodeterioration & Biodegradation, 2018, 126, 224- 230.
37 PARK S Y, KIM C G.. Biodegradation of micro-polyethylene particles by bacterial colonization of a mixed microbial consortium isolated from a landfill site. Chemosphere, 2019, 222, 527- 533.
38 马昳超, 刘峻, 章若红, 等.. 微生物响应PBAT-PLA生物降解膜袋工业需氧堆肥降解机制. 农业工程学报, 2021, 37 (24): 224- 231.
文章导航

/