收稿日期: 2022-05-04
网络出版日期: 2023-11-23
基金资助
教育部产学研项目(201902146018)
Hierarchical description-aware personalized recommendation system
Received date: 2022-05-04
Online published: 2023-11-23
评论文本蕴含丰富的用户信息和物品信息, 对于用户的购买决策有着重要作用. 当用户面对不同的目标物品时, 会展现复杂的兴趣. 因此准确提取评论中的语义特征并建模物品和用户之间的上下文交互, 对学习用户偏好和物品属性十分关键. 专注于增强推荐系统的个性化捕捉和动态兴趣建模能力, 考虑不同特征的有用性, 提出了一种分层级描述感知的个性化推荐 (description-aware personal recommendation, DAPR) 算法: 在评论集合的单词层级, 设计个性化的信息选择网络, 提取重要的单词语义特征; 在评论层级, 基于交叉注意力机制设计神经网络, 动态地学习评论的有用性; 拼接评论摘要作为描述, 设计协同注意力网络, 捕捉更丰富的上下文感知的特征. 在5个Amazon数据集上的实验结果证明了所提方法能取得与基线模型相当的推荐性能.
陈道佳 , 陈志云 . 分层级描述感知的个性化推荐系统[J]. 华东师范大学学报(自然科学版), 2023 , 2023(6) : 73 -84 . DOI: 10.3969/j.issn.1000-5641.2023.06.007
Review text contains comprehensive user and item information and it has a great influence on users’ purchase decision. When users interact with different target items, they may show complex interests. Therefore, accurately extracting review semantic features and modeling the contextual interaction between items and users is critical for learning user preferences and item attributes. Focusing on enhancing the personalization capture and dynamic interest modeling abilities of recommender systems, and considering the usefulness of different features, we propose a hierarchical description-aware personalized recommendation (DAPR) algorithm. At the word level of review text, we design a personalized information selection network to extract important word semantic features. At the review level, we design a neural network based on a cross-attention mechanism to dynamically learn the usefulness of reviews, concatenate review summaries as descriptions, and devise a co-attention network to capture rich context-aware features. The analysis of five Amazon datasets reveal that the proposed method can achieve comparable recommendation performance to the baseline models.
Key words: recommendation system; review-based; attention mechanism; co-attention
1 | MCAULEY J, LESKOVEC J. Hidden factors and hidden topics: Understanding rating dimensions with review text [C]// Proceedings of the 7th ACM Conference on Recommender Systems. ACM, 2013: 165-172. |
2 | LING G, LYU M R, KING I. Ratings meet reviews, a combined approach to recommend [C]// Proceedings of the 8th ACM Conference on Recommender Systems. ACM, 2014: 105-112. |
3 | ZHENG L, NOROOZI V, YU P S. Joint deep modeling of users and items using reviews for recommendation [C]// Proceedings of the 10th ACM International Conference on Web Search and Data Mining. ACM, 2017: 425-434. |
4 | SEO S, HUANG J, YANG H, et al. Interpretable convolutional neural networks with dual local and global attention for review rating prediction [C]// Proceedings of the 11th ACM Conference on Recommender Systems. ACM, 2017: 297-305. |
5 | CHEN C, ZHANG M, LIU Y Q, et al. Neural attentional rating regression with review-level explanations [C]// Proceedings of the 2018 World Wide Web Conference. ACM, 2018: 1583-1592. |
6 | LIU D H, LI J, DU B, et al. DAML: Dual attention mutual learning between ratings and reviews for item recommendation [C]// Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2019: 344-352. |
7 | WU L B, QUAN C, LI C L, et al. A context-aware user-item representation learning for item recommendation[J]. ACM Transactions on Information Systems, 2019, 37(2). DOI: 10.1145/3298988. |
8 | CHIN J Y, ZHAO K Q, JOTY S, et al. ANR: Aspect-based neural recommender [C]// Proceedings of the 27th ACM International Conference on Information and Knowledge Management. ACM, 2018: 147-156. |
9 | WU S W, ZHANG Y X, ZHANG W T, et al. Enhanced review-based rating prediction by exploiting aside information and user influence [J]. Knowledge-Based Systems, 2021, 222: 107015. |
10 | TAY Y, LUU A T, HUI S C. Multi-pointer co-attention networks for recommendation [C]// Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2018: 2309-2318. |
11 | WU C H, WU F Z, LIU J X, et al. Hierarchical user and item representation with three-tier attention for recommendation [C]// Proceedings of NAACL-HLT 2019. Association for Computational Linguistics (ACL), 2019: 1818-1826. |
12 | ZENG H S, AI Q Y. A hierarchical self-attentive convolution network for review modeling in recommendation systems [EB/OL]. (2020-11-26)[2022-03-21]. https://doi.org/10.48550/arXiv.2011.13436. |
13 | KOREN Y, BELL R, VOLINSKY C.. Matrix factorization techniques for recommender systems. Computer, 2009, 42 (8): 30- 37. |
14 | TAN Y Z, ZHANG M, LIU Y Q, et al. Rating-boosted latent topics: Understanding users and items with ratings and reviews [C]// Proceedings of the 25th International Joint Conference on Artificial Intelligence (IJCAI-16). IJCAI, 2016: 2640-2646. |
15 | BAO Y, FANG H, ZHANG J.. TopicMF: Simultaneously exploiting ratings and reviews for recommendation. Proceedings of the AAAI Conference on Artificial Intelligence, 2014, 28 (1): 2- 8. |
16 | DIAO Q M, QIU M H, WU C Y, et al. Jointly modeling aspects, ratings and sentiments for movie recommendation (JMARS) [C]// Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2014: 193-202. |
17 | WANG H, WANG N Y, YEUNG D Y. Collaborative deep learning for recommender systems [C]// Proceedings of the 21st ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2015: 1235-1244. |
18 | KIM D, PARK C, OH J, et al. Convolutional matrix factorization for document context-aware recommendation [C]// Proceedings of the 10th ACM Conference on Recommender Systems. ACM, 2016: 233-240. |
19 | CATHERINE R, COHEN W. TransNets: Learning to transform for recommendation [C]// Proceedings of the 11th ACM Conference on Recommender Systems. ACM, 2017: 288-296. |
20 | WANG X, OUNIS I, MACDONALD C. Leveraging review properties for effective recommendation [C]// Proceedings of the Web Conference 2021. ACM, 2021: 2209-2219. |
21 | DONG X, NI J C, CHENG W, et al. Asymmetrical hierarchical networks with attentive interactions for interpretable review-based recommendation [C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence (AAAI-20). AAAI, 2020: 7667-7674. |
22 | LI C L, QUAN C, PENG L, et al. A capsule network for recommendation and explaining what you like and dislike [C]// Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, 2019: 275-284. |
23 | LIU H T, WANG W J, PENG Q Y, et al. Toward comprehensive user and item representations via three-tier attention network [J]. ACM Transactions on Information Systems, 2021, 39(3). DOI: 10.1145/3446341. |
24 | GAO J Y, LIN Y, WANG Y S, et al. Set-sequence-graph: A multi-view approach towards exploiting reviews for recommendation [C]// Proceedings of the 29th ACM International Conference on Information and Knowledge Management. ACM, 2020: 395-404. |
25 | CHEN Y. Convolutional neural network for sentence classification [D]. Waterloo, ON Canada: University of Waterloo, 2015. |
26 | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need [C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. ACM, 2017: 6000–6010. |
27 | DAUPHIN Y N, FAN A, AULI M, et al. Language modeling with gated convolutional networks [C]// Proceedings of the 34th International Conference on Machine Learning - Volume 70. ACM, 2017: 933-941. |
28 | OVED N, LEVY R. Pass: Perturb-and-select summarizer for product reviews [C]// Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing. Association for Computational Linguistics (ACL), 2021: 351-365. |
29 | LU J S, YANG J W, BATRA D, et al. Hierarchical question-image co-attention for visual question answering [C]// Proceedings of the 30th International Conference on Neural Information Processing Systems. ACM, 2016: 289-297. |
/
〈 |
|
〉 |