计算机科学

融合多粒度语义特征的中文情感分析方法

  • 任菊香 ,
  • 刘忠宝
展开
  • 1. 山西工程科技职业大学 信息工程学院, 山西 晋中 030619
    2. 北京语言大学 信息科学学院, 北京 100083
    3. 泉州信息工程学院 软件学院, 福建 泉州 362000
任菊香, 女, 硕士, 副教授, 主要研究方向为管理统计与数据挖掘. E-mail: 63896887@qq.com

收稿日期: 2022-06-20

  网络出版日期: 2023-11-23

基金资助

福建省社会科学基金 (FJ2021B126, FJ2022A018)

Integrating multi-granularity semantic features into the Chinese sentiment analysis method

  • Juxiang REN ,
  • Zhongbao LIU
Expand
  • 1. School Information Engineering, Shanxi Vocational University of Engineering Science and Technology, Jinzhong, Shanxi 030619, China
    2. School of Information Science, Beijing Language and Culture University, Beijing 100083, China
    3. School of Software, Quanzhou University of Information Engineering, Quanzhou, Fujian 362000, China

Received date: 2022-06-20

  Online published: 2023-11-23

摘要

中文情感分析是自然语言处理的重要研究内容, 旨在探究中文文本中蕴含的情感倾向. 近年来, 中文情感分析研究取得了长足进步, 但鲜有研究根据语言本身特征和下游任务需求进行探讨. 鉴于此, 针对中文文本的特殊性以及情感分析的实际需求, 在字、词特征的基础上, 引入部首特征和情感词性特征, 利用双向长短期记忆网络、注意力机制、循环卷积神经网络等模型, 提出了融合字、词、部首、词性等多粒度语义特征的中文文本情感分析方法. 在融合各类特征的基础上, 利用softmax函数进行情感预测. 数据集NLPECC (natural language processing and Chinese computing)上的对比实验结果表明, 所提方法的F1值均达到84.80%, 一定程度上提高了已有方法的性能, 较好地完成了中文文本情感分析任务.

本文引用格式

任菊香 , 刘忠宝 . 融合多粒度语义特征的中文情感分析方法[J]. 华东师范大学学报(自然科学版), 2023 , 2023(6) : 95 -107 . DOI: 10.3969/j.issn.1000-5641.2023.06.009

Abstract

Chinese sentiment analysis is one of important researches in natural language processing, which aims to discover the sentimental tendencies in the Chinese text. In recent years, research on Chinese text sentiment analysis has made great progress in efficiencies, but few studies have explored the characteristics of the language and downstream task requirements. Therefore, in view of the particularity of Chinese text and the requirements of sentiment analysis, using the Chinese text sentiment analysis method that integrates multi-granularity semantic features, such as characters, words, radicals, and part-of-speech is proposed. This introduces radical features and emotional part-of-speech features based on character and word features. Additionally, this integration uses bidirectional the long short-term memory network (BLSTM), attention mechanism and recurrent convolutional neural network (RCNN). The softmax function is used to predict the sentimental tendencies by integrating multi-granularity semantic features. The comparative experiment results on the NLPECC (natural language processing and Chinese computing) dataset showed that the F1 score of the proposed method was 84.80%, which improved the performance of the existing methods to some extent and completed the Chinese text sentiment analysis task.

参考文献

1 刘文秀, 李艳梅, 罗建, 等.. 基于BERT与BiLSTM的中文短文本情感分析. 太原师范学院学报(自然科学版), 2020, 19 (4): 52- 58.
2 DEVLIN J, CHANG M W, LEE K, et al. BERT: Pre-training of deep bidirectional transformers for language understanding [C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Association for Computational Linguistics (ACL), 2019: 4171-4186.
3 徐凯旋, 李宪, 潘亚磊.. 基于双向编码转换器和文本卷积神经网络的微博评论情感分类. 复杂系统与复杂性科学, 2021, 18 (2): 89- 94.
4 张海涛, 王丹, 徐海玲, 等.. 基于卷积神经网络的微博舆情情感分类研究. 情报学报, 2018, 37 (7): 695- 702.
5 曹宇, 李天瑞, 贾真, 等.. BGRU: 中文文本情感分析的新方法. 计算机科学与探索, 2019, 13 (6): 973- 981.
6 吴鹏, 李婷, 仝冲, 等.. 基于OCC模型和LSTM模型的财经微博文本情感分类研究. 情报学报, 2020, 39 (1): 81- 89.
7 胡任远, 刘建华, 卜冠南, 等.. 融合BERT的多层次语义协同模型情感分析研究. 计算机工程与应用, 2021, 57 (13): 176- 184.
8 缪亚林, 姬怡纯, 张顺, 等.. CNN-BiGRU模型在中文短文本情感分析的应用. 情报科学, 2021, 39 (4): 85- 91.
9 李平, 戴月明, 吴定会.. 双通道卷积神经网络在文本情感分析中的应用. 计算机应用, 2018, 38 (6): 1542- 1546.
10 张柳, 王晰巍, 黄博, 等.. 基于字词向量的多尺度卷积神经网络微博评论的情感分类模型及实验研究. 图书情报工作, 2019, 63 (18): 99- 108.
11 陈欣, 杨小兵, 姚雨虹.. 基于BLSTM算法和字词融合的文本情感分类方法. 中国计量大学学报, 2020, 31 (2): 225- 232.
12 赵富, 杨洋, 蒋瑞, 等.. 融合词性的双注意力Bi-LSTM情感分析. 计算机应用, 2018, 38 (S2): 103- 106,147.
13 王义, 沈洋, 戴月明.. 基于细粒度多通道卷积神经网络的文本情感分析. 计算机工程, 2020, 46 (5): 102- 108.
14 ZHOU H, HUANG M L, ZHANG T Y, et al. Emotional chatting machine: Emotional conversation generation with internal and external memory [C]// Proceedings of the 32nd AAAI Conference on Artificial Intelligence. AAAI, 2018: 730-738.
15 JOULIN A, GRAVE E, BOJANOWSKI P, et al. Bag of tricks for efficient text classification [C]// Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics, Volume 2, Short Papers. Association for Computational Linguistics (ACL), 2017: 427-431.
16 XU G X, MENG Y T, QIU X Y, et al.. Sentiment analysis of comment texts based on BiLSTM. IEEE Access, 2019, (7): 51522- 51532.
17 李卫疆, 漆芳.. 基于多通道双向长短期记忆网络的情感分析. 中文信息学报, 2019, 33 (12): 119- 128.
18 艾山·吾买尔, 魏文琳, 早克热·卡德尔.. 基于BiLSTM + Attention的体育领域情感分析研究. 新疆大学学报(自然科学版), 2020, 37 (2): 142- 149.
文章导航

/