湿地生态净化技术应用研究

基于多功能耦合的潮汐流稻田湿地生态净化系统研究

  • 邹宏硕 ,
  • 傅敏 ,
  • 肖梦蝶 ,
  • 盛世雯 ,
  • 徐平 ,
  • 陈雪初
展开
  • 华东师范大学 生态与环境科学学院, 上海 200241

收稿日期: 2023-03-20

  录用日期: 2023-06-24

  网络出版日期: 2024-01-23

基金资助

上海市科委社会发展科技攻关项目 (22dz1202600); 上海市生态环境局科研项目(沪环科[2023]第36号)

Study on ecological purification system of tidal-flow paddy wetland based on multifunctional coupling

  • Hongshuo ZOU ,
  • Min FU ,
  • Mengdie XIAO ,
  • Shiwen SHENG ,
  • Ping XU ,
  • Xuechu CHEN
Expand
  • School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China

Received date: 2023-03-20

  Accepted date: 2023-06-24

  Online published: 2024-01-23

摘要

构建了基于多功能耦合的潮汐流稻田湿地生态净化系统, 处理罗氏沼虾陆基养殖尾水, 研究水质净化效果、CH4排放情况、稻田节肢动物多样性和水稻生长状况, 并探讨潮汐流稻田湿地系统的综合效益. 结果表明: 潮汐流稻田湿地能够有效地净化陆基水产养殖尾水, 对溶解性无机氮和总氮的平均去除率分别为54.3%和44.9%, 对溶解性无机磷和总磷的平均去除率分别为42.9%和43.0%; 潮汐流稻田湿地的CO2和CH4排放通量与常规稻田相比分别减少了5.4%和92.5%; 与处于淹水期的常规稻田相比, 潮汐流稻田湿地的产甲烷功能基因mcrA基因丰度减少了82.3%; 潮汐流稻田湿地提高了节肢动物多样性及其天敌的种类数以及天敌多度/害虫多度, 抑制了害虫爆发, 具有较好的综合效益.

本文引用格式

邹宏硕 , 傅敏 , 肖梦蝶 , 盛世雯 , 徐平 , 陈雪初 . 基于多功能耦合的潮汐流稻田湿地生态净化系统研究[J]. 华东师范大学学报(自然科学版), 2024 , 2024(1) : 58 -67 . DOI: 10.3969/j.issn.1000-5641.2024.01.007

Abstract

In this study, a pilot-scale tidal-flow paddy wetland system based on multifunctional coupling was constructed to treat land-based aquaculture tailwater of Macrobrachium rosenbergii. This study explored the purification ability, CH4 emissions, arthropod diversity, and comprehensive benefits of the tidal-flow paddy wetland system to provide a scientific basis for the application of this system. The results showed that the tidal-flow paddy wetland system could effectively purify land-based aquaculture tailwater. The removal capacities of dissolved inorganic nitrogen, total nitrogen, dissolved inorganic phosphorus, and total phosphorus were approximately 54.3%, 44.9%, 42.9%, and 43.0%, respectively. Simultaneously, the system had no negative impact on the external environment and indirectly purifies river water. Compared with conventional paddy fields, the tidal-flow paddy wetland system reduced CO2 and CH4 emissions by 5.4% and 92.5%, respectively. Compared to conventional paddy fields during the flooding period, the abundance of the mcrA gene in the tidal-flow paddy wetland decreased by 82.3%. Moreover, the tidal-flow paddy wetland system improved biodiversity and natural enemy abundance/pest abundance, inhibited pest outbreaks, supported more species, and increased comprehensive benefits compared to the control.

参考文献

1 谷潇. 陆基循环水养殖系统中不同养殖密度对异育银鲫“中科5号”苗种生长性能的影响 [D]. 武汉: 华中农业大学, 2022.
2 曹涛涛, 徐栋, 白国梁, 等.. 以RAS固体废弃物为碳源的改进型人工湿地对养殖尾水的脱氮效果. 水生生物学报, 2022, 46 (10): 1475- 1483.
3 张弘杰, 过梓栩, 赵大勇, 等.. 基于稻田湿地的循环水养殖系统水质变化. 环境科学与技术, 2020, 43 (S1): 159- 164.
4 WANG C, SHEN J, LIU J, et al.. Microbial mechanisms in the reduction of CH4 emission from double rice cropping system amended by biochar: A four-year study. Soil Biology and Biochemistry, 2019, 139, 251- 263.
5 SAEED T, MIAH M J, KHAN T, et al.. Pollutant removal employing tidal flow constructed wetlands: Media and feeding strategies. Chemical Engineering Journal, 2020, 382, 122874.
6 YANG H L, CHEN X C, ZHANG C S, et al.. Nitrogen removal by eutrophic coastal wetlands accomplished with CH4 emission reduction. Journal of Cleaner Production, 2022, 332, 130082.
7 赵明明. 盐度对滨海盐沼湿地芦苇生长及固碳降氮功能的影响 [D]. 上海: 华东师范大学, 2022.
8 CHEN X, HUANG Y, YANG H, et al.. Restoring wetlands outside of the seawalls and to provide clean water habitat. Science of the Total Environment, 2020, 721, 137788.
9 郭海瑞, 赵立纯, 窦超银.. 稻田人工湿地氮磷去除机制及其研究进展. 江苏农业科学, 2018, 46 (6): 23- 26.
10 DUY P D, CAI K, DUC P L, et al.. Rice cultivation without synthetic fertilizers and performance of microbial fuel cells (MFCs) under continuous irrigation with treated wastewater. Water, 2019, 11 (7): 1516.
11 陶玲, 彭格格, 陈思媛, 等.. 稻田湿地循环利用池塘养殖尾水效果. 水生生物学报, 2022, 46 (10): 1466- 1474.
12 熊家晴, 李东辉, 郑于聪, 等.. 潮汐流人工湿地对高污染河水的处理功效. 环境工程学报, 2014, 8 (12): 5179- 5184.
13 陈静雅, 王晓昌, 郑于聪, 等.. 潮汐流人工湿地对高污染河水氮磷的去除特性. 环境科学与技术, 2017, 40 (12): 32- 37.
14 宋玉丽, 吴树彪, 王飞, 等.. 潮汐流-水平潜流组合人工湿地的污水处理效果. 中国农业大学学报, 2012, 17 (4): 165- 172.
15 薛利红, 杨林章.. 太湖流域稻田湿地对低污染水中氮磷的净化效果. 环境科学研究, 2015, 28 (1): 117- 124.
16 白志刚. 氮肥运筹对水稻氮代谢及稻田氮肥利用率的影响 [D]. 北京; 中国农业科学院, 2019.
17 GARCIA K, OLIMPI E M, M′GONIGLE L, et al.. Semi-natural habitats on organic strawberry farms and in surrounding landscapes promote bird biodiversity and pest control potential. Agriculture, Ecosystems and Environment, 2023, 347, 108353.
18 冯金飞, 李凤博, 吴殿星, 等.. 稻作系统对淡水养殖池塘富营养化的修复效应及应用前景. 生态学报, 2014, 34 (16): 4480- 4487.
19 WAN N F, CAI Y M, SHEN Y J, et al.. Increasing plant diversity with border crops reduces insecticide use and increases crop yield in urban agriculture. eLife, 2018, 7, e35103.
20 KATAYAMA N, OSADA Y, MASHIKO M, et al.. Organic farming and associated management practices benefit multiple wildlife taxa: A large-scale field study in rice paddy landscapes. Journal of Applied Ecology, 2019, 56 (8): 1970- 1981.
21 DINNING J, STOCKAN J, FIELDING D, et al.. Habitat suitability for Coenagrion hastulatum (Charpentier) (Northern Damselfly) in North-east Scotland. Journal of the British Dragonfly Society, 2022, 38 (1): 47- 64.
22 邱佩, 崔远来, 罗玉峰, 等.. 淹灌和间歇灌溉对晚稻田节肢动物群落多样性影响. 中国农村水利水电, 2016, 406 (8): 113- 117.
23 傅志强, 龙攀, 刘依依, 等.. 水氮组合模式对双季稻甲烷和氧化亚氮排放的影响. 环境科学, 2015, 36 (9): 3365- 3372.
24 贺文君, 韩广轩, 宋维民, 等.. 潮汐作用对黄河三角洲盐沼湿地甲烷排放的影响. 生态学报, 2019, 39 (17): 6238- 6246.
25 YAN X, OHARA T, AKIMOTO H.. Development of region-specific emission factors and estimation of methane emission from rice fields in the East, Southeast and South Asian countries. Global Change Biology, 2003, 9 (2): 237- 254.
26 张鲜鲜. 上海稻田CH4和N2O排放特点及其减排措施的研究 [D]. 上海: 上海交通大学, 2016.
27 WALLS S C.. Book review: The ecology and behavior of amphibians. The Quarterly Review of Biology, 2008, 83 (4): 416- 417.
28 柳磊, 陶玲, 代梨梨, 等.. 基于组合湿地构建的池塘循环水养殖系统运行效果. 淡水渔业, 2023, 53 (1): 92- 101.
29 GAO X, ZHANG M, LI X, et al.. Nitrogen and phosphorus budget of a Haliotis discus hannai and Apostichopus japonicus polyculture system. Aquaculture Research, 2019, 50 (4): 1005- 1019.
30 高霄龙, 刘鹰, 李贤, 等.. 鲍放养密度对循环水养殖水质的影响及生物滤器净化效果. 农业工程学报, 2017, 33 (21): 244- 252.
31 KELLER P S, CATALáN N, VON S D, et al.. Global CO2 emissions from dry inland waters share common drivers across ecosystems. Nature Communications, 2020, 11 (1): 2126.
32 HE P, LING N, LYU X T, et al.. Contributions of abundant and rare bacteria to soil multifunctionality depend on aridity and elevation. Applied Soil Ecology, 2023, 188, 104881.
33 陈中云, 闵航, 吴伟祥.. 农药污染对黄松稻田土壤产甲烷菌数量和甲烷排放通量影响的研究. 中国沼气, 2003, 21 (1): 18- 21.
34 孙素云. 二氯吡啶酸(CLP)胁迫下反硝化脱氮性能与微生物响应机制研究 [D]. 天津: 天津城建大学, 2022.
35 ANI O A, ONU O V, OKORO G O, et al. Overview of biological methods of weed control [G/OL]// RADHAKRISHNAN R. Biological Approaches for Controlling Weeds. (2018-09-15)[2023-03-20]. http://dx.doi.org/10.5772/intechopen.71593.
文章导航

/