相对论与引力场

Dirac和Majorana费米子在空间平坦FRW时空背景下挠率场中的散射

  • 林威 ,
  • 薛迅
展开
  • 1. 华东师范大学 物理与电子科学学院, 上海 200241
    2. 华东师范大学重庆研究院, 重庆 401120
    3. 新疆大学 理论物理中心, 乌鲁木齐 830046

收稿日期: 2023-05-03

  网络出版日期: 2024-05-25

基金资助

国家自然科学基金(11775080,11865016); 重庆市自然科学基金(CSTB2022NSCQ-MSX0351)

Dirac and Majorana neutrino scattering by cosmic torsion in spatial-flat FRW spacetime background

  • Wei LIN ,
  • Xun XUE
Expand
  • 1. School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
    2. Chongqing Institute of East China Normal University, Chongqing 401120, China
    3. Center for Theoretical Physics, Xinjiang University, Urumqi 830046, China

Received date: 2023-05-03

  Online published: 2024-05-25

摘要

讨论了在空间平坦FRW (Friedmann-Robertson-Walker)时空背景下, 通过有质量宇宙学中微子能量分布的移动检验由大尺度Lorentz破缺产生的宇宙学挠率存在的可能性. 在空间平坦FRW时空背景下, 有质量的宇宙学中, 微子在宇宙学挠率场中的散射会导致其末态能量分布的峰值位置相比于无挠情况时有一个$m^2/E^2$量级的移动; 并且, 在非最小矢量挠率耦合的情况下, 对于Dirac中微子和Majoran中微子移动的数值由于矢量挠率的影响而不同.

本文引用格式

林威 , 薛迅 . Dirac和Majorana费米子在空间平坦FRW时空背景下挠率场中的散射[J]. 华东师范大学学报(自然科学版), 2024 , 2024(3) : 1 -11 . DOI: 10.3969/j.issn.1000-5641.2024.03.001

Abstract

The possibility of detecting cosmic torsion originated from large scale Lorentz violation of cosmology at cosmic scale by the shift of energy distribution for massive cosmic neutrinos in spatial-flat FRW (Friedmann-Robertson-Walker) spacetime background is discussed. Massive cosmic neutrino scattering owing to cosmic torsion leads to a shift in the peak position of their final state energy distribution at the order of $m^2/E^2$. Moreover, the Dirac and Majorana neutrino shift values differ by the vector part of the torsion in the non-minimal vector torsion coupling case.

参考文献

1 FILIPPENKO A V, RIESS A G.. Results from the high-z supernova search team. Physics Reports, 1998, 307 (1/2/3/4): 31- 44.
2 RIESS A G, FILIPPENKO A V, CHALLIS P, et al.. Observational evidence from supernovae for an accelerating universe and a cosmological constant. The Astronomical Journal, 1998, 116 (3): 1009- 1038.
3 PERLMUTTER S, ALDERING G, GOLDHABER G, et al.. Measurements of $ \Omega $ and $ \Lambda $ from 42 high-redshift supernovae. The Astrophysical Journal, 1999, 517 (2): 565- 586.
4 HAMILTON J C. What have we learned from observational cosmology? [J]. Studies in History and Philosophy of Science Part B, 2014, 46: 70-85.
5 MAGGIORE M. A Modern Introduction to Quantum Field Theory [M]. New York: Oxford University Press, 2004.
6 AGRAWAL P, OBIED G, STEINHARDT P J, et al. On the cosmological implications of the string swampland [J]. Physics Letters B, 2018, 784: 271-276.
7 OBIED G, OOGURI H, SPODYNEIKO L, et al. De sitter space and the swampland [EB/OL]. (2018-07-17)[2023-04-03]. https://arxiv.org/abs/1806.08362.
8 WILL C M. Was Einstein right? [J]. Annalen der Physik, 2006, 518(1/2): 19-33.
9 ASMODELLE E. Tests of general relativity: A review [D]. Preston, Lancashire, UK: University of Central Lancashire, 2017.
10 CRISPINO L C B, KENNEFICK D. 100 years of the first experimental test of general relativity [J]. Nature Physics, 2019, 15: 416-419.
11 DI VALENTINO E, MELCHIORRI A, SILK J. Planck evidence for a closed Universe and a possible crisis for cosmology [J]. Nature Astronomy, 2019, 4(2): 196-203.
12 DI VALENTINO E, MELCHIORRI A, SILK J. Investigating cosmic discordance [J]. The Astrophysical Journal Letters, 2021, 908(1): L9.
13 吴奕暐, 薛迅. SIM(2)引力规范理论 [J]. 华东师范大学学报 (自然科学版), 2016(3): 76-83.
14 WU Y W, XUE X, YANG L X, et al. The effective gravitational theory at large scale with Lorentz violation [EB/OL]. (2015-10-18)[2023-04-03]. https://arxiv.org/abs/1510.00814.
15 YANG L X, WU Y W, WEI W Y, et al.. The effective gravitation theory at large scale with Lorentz violation. Chinese Science Bulletin, 2017, 62 (9): 944- 950.
16 魏文叶, 申佳音, 吴奕暐, 等. 大尺度有效引力的E(2) 规范理论模型 [J]. 物理学报, 2017, 66(13): 130301.
17 SHEN J Y, XUE X. Large scale Lorentz violation gravity and dark energy [C]// WANG W, XING Z Z. Proceedings of the 28th International Symposium on Lepton Photon Interactions at High Energies (Lepton Photon 2017). Singapore: World Scientific Publishing Co. Pte. Ltd, 2020: 459-475.
18 ZHAI H Y, SHEN J Y, XUE X. Uplifting of AdS type to quintessence-like potential induced by frozen large-scale Lorentz violation [J]. Chinese Physics C, 2020, 44(8): 085101.
19 LI Q, LI J, ZHOU Y X, et al. The effective potential originating from swampland and the non-trivial Brans-Dicke coupling [J]. Chinese Physics C, 2020, 44(10): 105108.
20 ZHANG H C, XU L X. Inflation in the parity-conserving Poincaré gauge cosmology [J]. Journal of Cosmology and Astroparticle Physics, 2020(10): 003.
21 ZHANG H C, XU L X. Late-time acceleration and inflation in a Poincaré gauge cosmological model [J]. Journal of Cosmology and Astroparticle Physics, 2019(9): 050.
22 ALDROVANDI R, PEREIRA J G. Teleparallel Gravity: An Introduction [M]. Berlin: Springer, 2013.
23 SHAPIRO I L. Torsion: Theory and possible observables [EB/OL]. (1998-11-09)[2023-04-03]. https://arxiv.org/abs/hep-th/9811072.
24 SHAPIRO I L.. Physical aspects of the space–time torsion. Physics Reports, 2002, 357 (2): 113- 213.
25 BUCHBINDER I, SHAPIRO I. On the renormalization of models of quantum field theory in an external gravitational field with torsion [J]. Physics Letters B, 1985, 151(3): 263-266.
26 YASSKIN P B, STOEGER W R. Propagation equations for test bodies with spin and rotation in theories of gravity with torsion [J]. Physical Review D, 1980, 21: 2081-2094.
27 HEHL F W, OBUKHOV Y N, PUETZFELD D. On Poincaré gauge theory of gravity, its equations of motion, and Gravity Probe B [J]. Physics Letters A, 2013, 377(31): 1775-1781.
28 TRUKHANOVA M, OBUKHOV Y N. Quantum hydrodynamics of spinning particles in electromagnetic and torsion fields [J]. Universe, 2021, 7(12): 498.
29 TSAMPARLIS M.. Cosmological principle and torsion. Physics Letters A, 1979, 75 (1/2): 27- 28.
30 MANDL F, SHAW G. Quantum Field Theory [M]. 2nd ed. New York: John Wiley and Sons, 2010.
31 COLLAS P, KLEIN D. The Dirac Equation in Curved Spacetime: A Guide for Calculations [M]. Berlin: Springer , 2019.
32 PARKER L. Quantized fields and particle creation in expanding universes. Ⅱ [J]. Physical Review D, 1971, 3(2): 346-356.
33 PARKER L E, TOMS D J. Quantum Field Theory in Curved Spacetime: Quantized Fields and Gravity [M]. New York: Cambridge University Press, 2009.
34 OLIVE K. Review of particle physics [J]. Chinese Physics C, 2014, 38(9): 090001.
35 OBERAUER L, IANNI A, SERENELLI A. Solar Neutrino Physics: The Interplay between Particle Physics and Astronomy [M]. [S.l]: John Wiley & Sons, Inc., 2020.
36 SREDNICKI M. Quantum Field Theory [M]. New York: Cambridge University Press, 2007.
37 MANGANO G, MIELE G, PASTOR S, et al. Updated BBN bounds on the cosmological lepton asymmetry for non-zero $ \theta_{13} $ [J]. Physics Letters B, 2012, 708(1/2): 1-5.
38 OLDENGOTT I M, SCHWARZ D J. Improved constraints on lepton asymmetry from the cosmic microwave background [J]. Europhysics Letters, 2017, 119(2): 29001.
39 WEINBERG S. Cosmology [M]. New York: Oxford University Press, 2008.
40 The Katrin Collaboration. Direct neutrino-mass measurement with sub-electronvolt sensitivity [J]. Nature Physics, 2022, 18(2): 160-166.
文章导航

/