原子、分子和光物理

近红外铌酸锂光栅耦合器耦合效率优化研究

  • 刘思琦 ,
  • 瞿敏妮 ,
  • 谢微
展开
  • 1. 华东师范大学 精密光谱科学与技术国家重点实验室, 上海 200241
    2. 上海交通大学 电子信息与电气工程学院 先进电子材料与器件平台, 上海 200240

收稿日期: 2023-02-24

  网络出版日期: 2024-05-25

基金资助

国家自然科学基金 (12174112, 62105199)

Research on optimization of the coupling efficiency of near-infrared lithium niobate grating coupler

  • Siqi LIU ,
  • Minni QU ,
  • Wei XIE
Expand
  • 1. State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
    2. Center for Advanced Electronic Materials and Devices, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 200240, China

Received date: 2023-02-24

  Online published: 2024-05-25

摘要

提出了一种基于铌酸锂导模结构的高效光栅耦合器设计方案及其优化的光学激发配置. 利用有限时域差分算法对光栅耦合器的耦合效果进行了数值分析; 主要研究了光栅周期、光栅占空比、二氧化硅隔离层厚度, 以及入射光的偏振和角度对光栅耦合效率的影响; 对在共振波长和非共振波长处空间光传播电场图像进行了模拟. 理论仿真结果显示, 在光栅周期为650 nm、光栅占空比为0.3、刻蚀深度为130 nm时, 利用横磁(transverse magnetic, TM)偏振光沿光栅法线夹角17°方向入射, 可获得优化的光栅耦合效率 ~38%, 从而有效地将空间光耦合进入铌酸锂亚波长波导薄膜中, 这对铌酸锂微纳光栅耦合器的设计和性能应用有借鉴和参考价值.

本文引用格式

刘思琦 , 瞿敏妮 , 谢微 . 近红外铌酸锂光栅耦合器耦合效率优化研究[J]. 华东师范大学学报(自然科学版), 2024 , 2024(3) : 113 -120 . DOI: 10.3969/j.issn.1000-5641.2024.03.012

Abstract

We propose an efficient grating coupler design scheme based on a lithium niobate guided mode structure and its optimized optical excitation configuration. The coupling effect of the grating coupler is numerically analysed using the finite time domain difference algorithm. We study the effects of the grating period, grating duty ratio, silica isolation layer thickness, polarization and angle of incident light on the coupling efficiency of the grating. The spatial light propagation electric field images are simulated for resonant and non-resonant wavelengths. The results show that with a grating period of 650 nm, a grating duty cycle of 0.3 and an etching depth of 130 nm, an optimised grating coupling efficiency of ~38% can be obtained using TM(transverse magnetic) polarised light incident along the grating normal angle of 17°, thus effectively coupling spatial light into the lithium niobate subwavelength waveguide film. This is of great reference value for the design and application performance of LiNbO3 micro-nano grating couplers.

参考文献

1 MENG Y, LIU Z T, XIE Z W, et al.. Versatile on-chip light coupling and (de)multiplexing from arbitrary polarizations to controlled waveguide modes using an integrated dielectric metasurface. Photonics Research, 2020, 8 (4): 564- 576.
2 XIE Z W, LEI T, QIU H D, et al.. Broadband on-chip photonic spin Hall element via inverse design. Photonics Research, 2020, 8 (2): 121- 126.
3 FANG B, LI H M, ZHU S N, et al.. Second-harmonic generation and manipulation in lithium niobate slab waveguides by grating metasurfaces. Photonics Research, 2020, 8 (8): 1296- 1300.
4 WANG K Y, REN X S, CHANG W J, et al.. Inverse design of digital nanophotonic devices using the adjoint method. Photonics Research, 2020, 8 (4): 528- 533.
5 WANG H W, ZHANG Y, HE Y, et al.. Compact silicon waveguide mode converter employing dielectric metasurface structure. Advanced Optical Materials, 2019, 7 (4): 1801191.
6 ARIZMENDI L.. Photonic applications of lithium niobate crystals. Physica Status Solidi (a), 2004, 201 (2): 253- 283.
7 JANNER D, TULLI D, GARCíA-GRANDA M, et al.. Micro-structured integrated electro-optic LiNbO3 modulators. Laser & Photonics Reviews, 2009, 3 (3): 301- 313.
8 WOOTEN E L, KISSA K M, YI-YAN A, et al.. A review of lithium niobate modulators for fiber-optic communications systems. IEEE Journal of Selected Topics in Quantum Electronics, 2000, 6 (1): 69- 82.
9 ADCOCK J C, DING Y H.. Quantum prospects for hybrid thin-film lithium niobate on silicon photonics. Frontiers of Optoelectronics, 2022, 15, 7.
10 HU H Y, GUI L L, RICKEN R, et al. Towards nonlinear photonic wires in lithium niobate [C]// Proceedings of SPIE Volume 7604. 2010: 76040R.
11 XIE R R, LI G Q, CHEN F, et al.. Microresonators in lithium niobate thin films. Advanced Optical Materials, 2021, 9 (19): 2100539.
12 CHENG Y. Ultra-low loss lithium niobate photonics [C]// Proceedings of SPIE Volume 11266. 2020: 112640A.
13 HE M B, XU M Y, REN Y X, et al.. High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit s?1 and beyond. Nature Photonics, 2019, 13 (5): 359- 364.
14 WANG C, ZHANG M, CHEN X, et al.. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature, 2018, 562 (7725): 101- 104.
15 WANG C, ZHANG M, YU M J, et al.. Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation. Nature Communications, 2019, 10 (1): 978.
16 罗砚浓, 蔡鑫伦.. X-切薄膜铌酸锂高效率光栅耦合器的设计. 半导体光电, 2022, 43 (2): 280- 284.
17 范天伟, 陈云琳, 张进宏.. 基于Talbot效应的掺镁铌酸锂二维六角位相阵列光栅的研究. 物理学报, 2013, 62 (9): 257- 262.
18 YANG F, FANG H, HAN H P, et al.. Wide bandwidth silicon nitride strip-loaded grating coupler on lithium niobate thin film. Crystals, 2022, 12 (1): 70.
19 RUAN Z L, HU J Y, XUE Y R, et al.. Metal based grating coupler on a thin-film lithium niobate waveguide. Optics Express, 2020, 28 (24): 35615- 35621.
20 CAI L T, PIAZZA G.. Low-loss chirped grating for vertical light coupling in lithium niobate on insulator. Journal of Optics, 2019, 21 (6): 065801.
21 CHEN Z H, NING Y F, XUN Y.. Chirped and apodized grating couplers on lithium niobate thin film. Optical Materials Express, 2020, 10 (10): 2513- 2521.
22 BAGHBAN M A, SCHOLLHAMMER J, ERRANDO-HERRANZ C, et al.. Bragg gratings in thin-film LiNbO3 waveguides. Optics Express, 2017, 25 (26): 32323- 32332.
23 王钊, 张爱玲, 田红苗, 等.. 基于铌酸锂的高阶可调谐布拉格波导光栅特性分析. 激光与光电子学进展, 2017, 54 (6): 67- 73.
24 CHEN Z H, WANG Y W, JIANG Y P, et al.. Grating coupler on single-crystal lithium niobate thin film. Optical Materials, 2017, 72, 136- 139.
25 CHEN B, RUAN Z L, HU J Y, et al.. Two-dimensional grating coupler on an X-cut lithium niobate thin-film. Optics Express, 2021, 29 (2): 1289- 1295.
26 MAHMOUD M, GHOSH S, PIAZZA G. Lithium niobate on insulator (LNOI) grating couplers [C]// 2015 Conference on Lasers and Electro-Optics (CLEO). IEEE, 2015: SW4I 7.
27 VIVIEN, PASCAL, LARDENOIS, et al.. Light injection in SOI microwaveguides using high-efficiency grating couplers. Journal of Lightwave Technology, 2006, 24 (10): 3810- 3815.
28 ZHENG Y, KAI X C, GAO P P, et al.. Fabrication tolerance analysis of grating couplers between optical fibers and silicon waveguide. Optik, 2020, 201, 163490.
29 EMMONS R M, HALL D G.. Buried-oxide silicon-on-insulator structures II: Waveguide grating couplers. IEEE Journal of Quantum Electronics, 1992, 28 (1): 164- 175.
文章导航

/