原子核与高能物理

重子磁矩的协变手征有效理论研究

  • 周海峰 ,
  • 杨继锋
展开
  • 华东师范大学 物理与电子科学学院, 上海 200241

收稿日期: 2023-04-08

  网络出版日期: 2024-05-25

基金资助

国家自然科学基金 (11435005)

Study of baryon magnetic moments in covariant chiral effective theory

  • Haifeng ZHOU ,
  • Jifeng YANG
Expand
  • School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China

Received date: 2023-04-08

  Online published: 2024-05-25

摘要

在SU(3)协变手征有效理论框架下, 使用扩展的极小减除(extended minimal subtraction,$ {\text{E}}\overline {{\text{MS}}} $)方案, 计算了至次领头阶(next-to-leading order, NLO)的重子质量和重子磁矩的一圈图修正贡献, 并使用实验数据与PACS-CS格点数据组的数据对解析结果进行了数值拟合. 结果表明, 在NLO重子质量和重子磁矩的修正贡献中, $ {\text{E}}\overline {{\text{MS}}} $方案可以给出不错的理论结果和数值拟合的结果; 该结果相较于重重子方法和红外正规化方法的结果更加优秀, 并且与EOMS (extended-on-mass-shell)方案的结果相近.

本文引用格式

周海峰 , 杨继锋 . 重子磁矩的协变手征有效理论研究[J]. 华东师范大学学报(自然科学版), 2024 , 2024(3) : 12 -26 . DOI: 10.3969/j.issn.1000-5641.2024.03.002

Abstract

In this paper, we calculate the next-to-leading order (NLO) corrections to the baryon mass and magnetic moment using the covariant chiral perturbation theory within the extended minimal subtraction$({\text{E}}\overline {{\text{MS}}})$scheme under SU(3). We also present a comparative analysis of the experimental data and lattice quantum chromodynamics data with the $ {\text{E}}\overline {{\text{MS}}} $ results, and extrapolate it into physical value. We show that $ {\text{E}}\overline {{\text{MS}}} $ provides a reasonable theoretical and numerical result at the NLO, better than those obtained from the heavy-baryon approach and infrared regularization, and close to that obtained by the extended-on-mass-shell (EOMS) scheme.

参考文献

1 WEINBERG S.. Phenomenological Lagrangians. Physica A, 1979, 96 (1/2): 327- 340.
2 GASSER J, LEUTWYLER H.. Chiral perturbation theory to one loop. Annals of Physics, 1984, 158 (1): 142- 210.
3 GASSER J, LEUTWYLER H.. Chiral perturbation theory: Expansions in the mass of the strange quark. Nuclear Physics B, 1985, 250 (1/2/3/4): 465- 516.
4 GASSER J, SAINIO M E, SVARC A.. Nucleons with chiral loops. Nuclear Physics B, 1988, 307 (4): 779- 853.
5 GEORGI H.. An effective field theory for heavy quarks at low energies. Physics Letters B, 1990, 240 (3-4): 447- 450.
6 ECKER G, MOJZIS M.. Low-energy expansion of the pion-nucleon Lagrangian. Physics Letters B, 1996, 365 (1/2/3/4): 312- 318.
7 BECHER T, Leutwyler H.. Baryon chiral perturbation theory in manifestly Lorentz invariant form. The European Physical Journal C-Particles and Fields, 1999, 9 (4): 643- 671.
8 GEGELIA J, JAPARIDZE G.. Matching the heavy particle approach to relativistic theory. Physical Review D, 1999, 60 (11): 114038.
9 PASCALATSA V, Holstein B R, Van der haeghen M.. A derivative of the Gerasimov–Drell–Hearn sum rule. Physics Letters B, 2004, 600 (3/4): 239- 247.
10 GENG L S, CAMALICH J M, ALVAREZ-RUSO L, et al.. Leading SU (3)-breaking corrections to the baryon magnetic moments in chiral perturbation theory. Physical Review Letters, 2008, 101 (22): 222002.
11 MARTIN CAMALICH J, GENG L S, VICENTE VACAS M J.. Lowest-lying baryon masses in covariant SU(3)-flavor chiral perturbation theory. Physical Review D, 2010, 82 (7): 074504.
12 REN X L, GENG L S, MENG J, et al.. Virtual decuplet effects on octet baryon masses in covariant baryon chiral perturbation theory. Physical Review D, 2013, 87 (7): 074001.
13 GEGELIA J, JAPARIDZE G, WANG X Q.. Power counting in relativistic baryon chiral perturbation theory. Journal of Physics G: Nuclear and Particle Physics, 2003, 29 (9): 2303.
14 YANG J F.. Anomalous “mapping” between pionfull and pionless EFT’s. Modern Physics Letters A, 2014, 29 (9): 1450043.
15 李帆, 杨继锋.. 核子–核子散射一圈图的手征有效场论分析. 华东师范大学学报(自然科学版), 2016, (3): 67- 75.
16 温莉宏, 杨继锋.. 强子结构的协变手征有效理论分析. 华东师范大学学报 (自然科学版), 2018, (3): 121- 128.
17 王彦, 杨继锋.. 矢量介子协变手征有效场理论研究. 华东师范大学学报(自然科学版), 2020, (1): 67- 75.
18 LIU Z, WEN L H, YANG J F.. Covariant propagator and chiral power counting. Nuclear Physics B, 2021, 963, 115288.
19 JENKINS E.. Baryon masses in chiral perturbation theory. Nuclear Physics B, 1992, 368 (1): 190- 203.
20 CAMALICH J M. Properties of the lowest-lying baryons in chiral perturbation theory[D]. Facultat de Fisica, 2010.
21 AOKI S, ISHIKAWA K I, ISHIZUKA N, et al.. 2 + 1 flavor lattice QCD toward the physical point. Physical Review D, 2009, 79 (3): 034503.
22 GENG L S, CAMALICH J M, VACAS M J V.. Leading-order decuplet contributions to the baryon magnetic moments in Chiral Perturbation Theory. Physics Letters B, 2009, 676 (1-3): 63- 68.
23 BEANE S R, CHANG E, DETMOLD W, et al.. High statistics analysis using anisotropic clover lattices: IV. Volume dependence of light hadron masses. Physical Review D, 2011, 84 (1): 014507.
24 KUBIS B, MEI?NER U G.. Baryon form factors in chiral perturbation theory. The European Physical Journal C–Particles and Fields, 2001, 18 (4): 747- 756.
25 COLEMAN S, GLASHOW S L.. Electrodynamic properties of baryons in the unitary symmetry scheme. Physical Review Letters, 1961, 6 (8): 423- 425.
26 BERNARD V, KAISER N, MEI?NER U G.. Chiral dynamics in nucleons and nuclei. International Journal of Modern Physics E, 1995, 4 (2): 193- 344.
27 MEI?NER U G, STEININGER S.. Baryon magnetic moments in chiral perturbation theory. Nuclear Physics B, 1997, 499 (1/2): 349- 367.
文章导航

/