An algorithm for keeping unitary evolution of a wave function in time-dependent potential field
Received date: 2023-04-07
Online published: 2024-05-25
数值求解波函数的演化是量子力学研究的重要内容. 很多数值算法针对不含时的势能而发展; 然而有很多物理问题其势能是含时的, 在这种情况下, 以前发展的算法不能保证波函数幺正演化. 为此, 针对含时的势场发展了保证幺正演化的Crank-Nicolson算法, 同时采用四阶精度的Numerov算法实现了高精度的空间离散差分. 数值结果证明, 这个新算法能保证波函数演化的幺正性和稳定性.
宋家莹 , 董光炯 . 一个保证波函数在含时的势场中幺正演化的算法[J]. 华东师范大学学报(自然科学版), 2024 , 2024(3) : 121 -127 . DOI: 10.3969/j.issn.1000-5641.2024.03.013
The numerical solution for wave function evolution plays an important role in quantum mechanics research. Many numerical algorithms have been developed for time-independent potential fields. However, multiple physical problems exist with the time-dependent potential. In this case, previously developed algorithms cannot guarantee the unitary evolution of wave function. In this study, the Crank-Nicolson algorithm to maintain unitary evolution in time-dependent potential fields is developed with a fourth-order accurate Numerov algorithm used to achieve high-precision spatial discretization. A numerical test demonstrates that the new algorithm maintains the unitarity and stability of wavefunction evolution.
1 | LANDOVITZ L F, LEVINE A M, SCHREIBER W M.. Time-dependent harmonic oscillators. Physical Review A, 1979, 20 (3): 1162- 1168. |
2 | TONG Y, JIANG W C, WU P, et al.. Two-photon double ionization of helium by chirped few-cycle attosecond pulses: From nonsequential to sequential regime. Chinese Physics B, 2016, 25 (7): 073202. |
3 | KATAOKA F, NOGAMI Y, DIJK W V.. Simulation of atomic ionization following the α decay of the nucleus. Journal of Physics A, 2000, 33 (31): 5547- 5566. |
4 | DIJK W V, NOGAMI Y. Model study of bremsstrahlung in alpha decay [C]// Few-Body Problems in Physics’02. Vienna: Springer, 2003: 229-232. |
5 | CHEON T, TSUTSUI I, FüL?P T.. Quantum abacus. Physics Letter A, 2004, 330 (5): 338- 342. |
6 | GAO Y J, MAYFIELD J, LUO S T.. Numerical solutions of the time-dependent Schr?dinger equation with position-dependent effective mass. Numerical Methods for Partial Differential Equations, 2023, 39 (4): 3222- 3245. |
7 | DIJK W V, TOYAMA F M.. Accurate numerical solutions of the time-dependent Schr?dinger equation. Physical Review E, 2007, 75 (3): 036707. |
8 | DIJK W V.. Efficient explicit numerical solutions of the time-dependent Schr?dinger equation. Physical Review E, 2022, 105 (2): 025303. |
9 | CAPLAN R M, GONZáLEZ R C.. Numerical stability of explicit Runge-Kutta finite-difference schemes for the nonlinear Schr?dinger equation. Applied Numerical Mathematics, 2013, 71, 24- 40. |
10 | BISWAS S, NANDI P, CHAKRABORTY B.. Emergence of a geometric phase shift in planar noncommutative quantum mechanics. Physical Review A, 2020, 102 (2): 022231. |
11 | LEWENSTEIN M, BALCOU P, IVANOV M Y, et al.. Theory of high-harmonic generation by low-frequency laser fields. Physical Review A, 1994, 49 (3): 2117- 2132. |
12 | 彭永刚.. 含时Schr?dinger方程求解在量子搜索算法设计中的应用. 大学物理, 2018, 37 (9): 17- 24. |
13 | MOYER C A.. Numerov extension of transparent boundary conditions for the Schr?dinger equation in one dimension. American Journal of Physics, 2004, 72 (3): 351- 358. |
14 | GOLDBERG A, SCHEY H M, SCHWARTZ J L.. Computer-generated motion pictures of one-dimensional quantum-mechanical transmission and reflection phenomena. American Journal of Physics, 1967, 35 (3): 177- 186. |
15 | MAKOWSKI A J, DEMBI?SKI S T.. Exactly solvable models with time-dependent boundary conditions. Physics Letters A, 1991, 154 (5/6): 217- 220. |
16 | PRESS W H, TEUKOLSKY S A, VETTERLING W T, et al. Numerical Recipes in Fortran 77: The Art of Scientific Computing[M]. 2nd ed. Cambridge: Cambridge University Press, 1992. |
/
〈 |
|
〉 |