量子物理与量子信息处理

基于Jaynes-Cummings模型的量子参数估计与初态优化

  • 乔莉文 ,
  • 彭家鑫 ,
  • 朱百强 ,
  • 张可烨
展开
  • 华东师范大学 物理与电子科学学院, 上海 200241

收稿日期: 2023-04-21

  网络出版日期: 2024-05-25

基金资助

国家自然科学基金 (11974116) ; 中央高校基本科研业务费

Quantum parameter estimation and initial state optimization based on the Jaynes-Cummings model

  • Liwen QIAO ,
  • Jiaxin PENG ,
  • Baiqiang ZHU ,
  • Keye ZHANG
Expand
  • School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China

Received date: 2023-04-21

  Online published: 2024-05-25

摘要

参数估计理论是根据实验测量数据推断物理模型中未知参数的重要理论工具. Jaynes-Cumming模型是量子光学中广泛使用的模型, 描述了二能级原子和单模量子光场之间的相互作用. 利用参数估计理论系统地研究了该模型中光–原子耦合强度$ g $的估计精度, 并找到了可达到最高估计精度的初态. 该结果可以提高基于Jaynes-Cumming模型的量子精密测量的精度, 该研究方法也可用于其他基于混合量子系统的量子度量学研究.

本文引用格式

乔莉文 , 彭家鑫 , 朱百强 , 张可烨 . 基于Jaynes-Cummings模型的量子参数估计与初态优化[J]. 华东师范大学学报(自然科学版), 2024 , 2024(3) : 128 -135 . DOI: 10.3969/j.issn.1000-5641.2024.03.014

Abstract

Quantum parameter estimation is a powerful theoretical tool for inferring unknown parameters in physical models from experimental data. The Jaynes-Cummings model is widely used in quantum optics, and describes the interaction between a two-level atom and a single-mode quantum optical field. Systematic research was performed on the estimation precision of atom-light coupling strength “g” in this model and the initial state was identified by which the estimation can achieve the best precision. Our results can improve the precision of quantum measurement with the Jaynes-Cummings model, and can be used for quantum metrology with other hybrid quantum systems.

参考文献

1 DEGEN C L, REINHARD F, CAPPELLARO P.. Quantum sensing. Reviews of Modern Physics, 2017, 89 (3): 035002.
2 GIOVANNETTI V, LLOYD S, MACCONE L.. Advances in quantum metrology. Nature Photonics, 2011, 5 (4): 222- 229.
3 LIU J, YUAN H, LU X-M, et al.. Quantum Fisher information matrix and multiparameter estimation. Journal of Physics A, 2020, 53 (2): 023001.
4 FISHER R A. Theory of statistical estimation[J]. Mathematical Proceedings of the Cambridge Philosophical Society, 1925, 22(5): 700-725.
5 HELSTROM C W.. Quantum detection and estimation theory. Journal of Statistical Physics, 1969, 1 (2): 231- 252.
6 HOLEVO A. Probabilistic and Statistical Aspects of Quantum Theory [M]. Pisa: Edizioni Della Normale Pisa, 2011.
7 PARIS M G.. Quantum estimation for quantum technology. International Journal of Quantum Information, 2009, 7 (supp01): 125- 137.
8 DEMKOWICZ-DOBRZA?SKI R, JARZYNA M, KO?ODY?SKI J. Quantum limits in optical interferometry [G]// Progress in Optics. [S.l.]: Elsevier Ltd., 2015, 60: 345-435.
9 JING X X, LIU J, ZHONG W, et al.. Quantum Fisher information of entangled coherent states in a lossy Mach-Zehnder interferometer. Communications in Theoretical Physics, 2014, 61 (1): 115- 120.
10 PANG S, BRUN T A.. Quantum metrology for a general Hamiltonian parameter. Physical Review A, 2014, 90 (2): 022117.
11 VOGEL W, WELSCH D G. Quantum Optics [M]. [S.l.]: John Wiley & Sons, 2006.
12 MEYSTRE P, SARGENT M. Elements of Quantum Optics [M]. [S.l.]: Springer Science & Business Media, 2007.
13 Y?NA? M, YU T, EBERLY J.. Sudden death of entanglement of two Jaynes-Cummings atoms. Journal of Physics B, 2006, 39 (15): S621.
14 RAJAGOPAL A, JENSEN K, CUMMINGS F.. Quantum entangled supercorrelated states in the Jaynes–Cummings model. Physics Letters A, 1999, 259 (3/4): 285- 90.
15 AKHTARSHENAS S J, FARSI M.. Negativity as entanglement degree of the Jaynes-Cummings model. Physica Scripta, 2007, 75 (5): 608.
16 GEA-BANACLOCHE J.. Collapse and revival of the state vector in the Jaynes-Cummings model: An example of state preparation by a quantum apparatus. Physical Review Letters, 1990, 65 (27): 3385- 3388.
17 METWALLY N, ABDELATY M, OBADA A S.. Quantum teleportation via entangled states generated by the Jaynes-Cummings model. Chaos, Solitons & Fractals, 2004, 22 (3): 529- 535.
18 LIU J M, WENG B.. Approximate teleportation of an unknown atomic state in the two-photon Jaynes-Cummings model. Physica A: Statistical Mechanics and its Applications, 2006, 367, 215- 219.
19 MIRMASOUDI F, AHADPOUR S.. Dynamics super quantum discord and quantum discord teleportation in the Jaynes-Cummings model. Journal of Modern Optics, 2018, 65 (5-6): 730- 736.
20 GENONI M G, INVERNIZZI C.. Optimal quantum estimation of the coupling constant of Jaynes-Cummings interaction. The European Physical Journal Special Topics, 2012, 203 (1): 49- 60.
21 EL ANOUZ K, EL ALLATI A, SALAH A, et al.. Quantum fisher information: Probe to measure fractional evolution. International Journal of Theoretical Physics, 2020, 59, 1460- 1474.
22 GIOVANNETTI V, LLOYD S, MACCONE L.. Quantum metrology. Physical Review Letters, 2006, 96 (1): 010401.
23 BRODY D C, GRAEFE E M.. Information geometry of complex hamiltonians and exceptional points. Entropy, 2013, 15 (9): 3361- 3378.
24 BRAUNSTEIN S L, CAVES C M, MILBURN G J.. Generalized uncertainty relations: Theory, examples, and Lorentz invariance. Annals of Physics, 1996, 247 (1): 135- 173.
25 MERZBACHER E. Quantum Mechanics [M]. [S.l.]: John Wiley & Sons, 1998.
26 SCHWABL F. Quantum Mechanics [M]. [S.l.]: Springer Science & Business Media, 2007.
文章导航

/