Linear entropy uncertainty relation of Ising model under Dzyaloshinskii-Moriya interaction
Received date: 2023-03-20
Online published: 2024-05-25
以Dzyaloshinskii-Moriya (DM) 相互作用下两比特Ising模型为研究对象, 研究了耦合强度、DM相互作用和环境温度对该自旋模型中的线性熵测不准关系(entropy uncertainty relation, EUR)的影响, 同时分析了系统热纠缠随环境温度的变化, 并将热纠缠与线性熵测不准关系做了对比. 研究表明, 系统线性熵不确定度、热纠缠的变化趋势取决于环境参数的选择, 且二者整体演化行为近似反相关. 此外, 对一组完备的互无偏基在选择不同测量基组合情况下, 测不准关系的下界会随着测量基个数的不同而变化; 而且这种线性熵测不准关系在特殊条件下可化为等式, 其下界与具体观测量选取无关. 与以往量子存储辅助熵测不准关系相比, 线性熵测不准关系可为精密测量提供有益的参考.
赵宇 , 刘金明 . Dzyaloshinskii-Moriya相互作用下Ising模型的线性熵测不准关系[J]. 华东师范大学学报(自然科学版), 2024 , 2024(3) : 147 -155 . DOI: 10.3969/j.issn.1000-5641.2024.03.016
In this research, by considering the two-qubit Ising model under Dzyaloshinskii-Moriya(DM) interaction as the research object, we investigate the effects of coupling strength, DM interaction and ambient temperature on the linear entropy uncertainty relation(EUR) in the system. Meanwhile, the variation of thermal entanglement with environment with ambient temperature is also discussed, and the relationship between thermal entanglement and linear EUR is compared. The results demonstrate that the systemic linear entropy uncertainty and thermal entanglement variance trend depends on the selection of environmental parameters, and their overall evolution behavior is roughly anti-related. Additionally, for a complete set of mutually unbiased bases, when different measurement base combinations are selected, the uncertainty relation lower bound will vary with the change in the number of measurement bases; moreover, the linear EUR can be transformed into an equation in special cases and its lower bound does not depend on the selection of a specific observation quantity. Compared with the previous quantum memory-assisted EUR, it provides a useful reference for precise measurement.
1 | HEISENBERG W.. über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Zeitschrift für Physik, 1927, 43 (3): 172- 198. |
2 | ROBERTSON H P.. The uncertainty principle. Physical Review, 1929, 34 (1): 163- 164. |
3 | BIA?YNICKI-BIRULA I, MYCIELSKI J.. Uncertainty relations for information entropy in wave mechanics. Communications in Mathematical Physics, 1975, 44 (2): 129- 132. |
4 | DEUTSCH D.. Uncertainty in quantum measurements. Physical Review Letters, 1983, 50 (9): 631- 633. |
5 | KRAUS K.. Complementary observables and uncertainty relations. Physical Review D, 1987, 35 (10): 3070- 3075. |
6 | MAASSEN H, UFFINK J B M.. Generalized entropic uncertainty relations. Physical Review Letters, 1988, 60 (12): 1103- 1106. |
7 | BERTA M, CHRISTANDL M, COLBECK R, et al.. The uncertainty principle in the presence of quantum memory. Nature Physics, 2010, 6 (9): 659- 662. |
8 | PREVEDEL R, HAMEL D R, COLBECK R, et al.. Experimental investigation of the uncertainty principle in the presence of quantum memory and its application to witnessing entanglement. Nature Physics, 2011, 7 (10): 757- 761. |
9 | LI C F, XU J S, XU X Y, et al.. Experimental investigation of the entanglement-assisted entropic uncertainty principle. Nature Physics, 2011, 7 (10): 752- 756. |
10 | JU F H, ZHANG Z Y, LIU J M.. Entropic uncertainty relation of a qubit–qutrit Heisenberg spin model and its steering. Communications in Theoretical Physics, 2020, 72 (12): 125102. |
11 | ZHANG Z Y, WEI D, LIU J M.. Entropic uncertainty relation of a two-qutrit Heisenberg spin model in nonuniform magnetic fields and its dynamics under intrinsic decoherence. Laser Physics Letters, 2018, 15 (6): 065207. |
12 | LIU S, MU L Z, FAN H.. Entropic uncertainty relations for multiple measurements. Physical Review A, 2015, 91 (4): 042133. |
13 | WANG H Y, MA Z H, WU S J, et al.. Uncertainty equality with quantum memory and its experimental verification. npj Quantum Information, 2019, 5 (1): 39. |
14 | WOOTTERS W K, FIELDS B D.. Optimal state-determination by mutually unbiased measurements. Annals of Physics, 1989, 191 (2): 363- 381. |
15 | DURT T, ENGLERT B-G, BENGTSSON I, et al.. On mutually unbiased bases. International Journal of Quantum Information, 2010, 8 (4): 535- 640. |
16 | YUAN H, ZHOU Z W, GUO G C.. Quantum state tomography via mutually unbiased measurements in driven cavity QED systems. New Journal of Physics, 2016, 18 (4): 043013. |
17 | DZYALOSHINSKY I.. A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics. Journal of Physics Chemistry of Solids, 1958, 4 (4): 241- 255. |
18 | JAFARI R, KARGARIAN M, LANGARI A, et al.. Phase diagram and entanglement of the Ising model with Dzyaloshinskii-Moriya interaction. Physical Review B, 2008, 78 (21): 214414. |
19 | LIU Y C, JIN G R, YOU L.. Quantum-limited metrology in the presence of collisional dephasing. Physical Review A, 2010, 82 (4): 045601. |
20 | ZIDAN N, BAKRY H, RAHMAN A U.. Entanglement and entropic uncertainty of two two‐level atoms. Annalen der Physik, 2022, 534 (4): 2100555. |
21 | HASHEM M, MOHAMED A-B A, HADDADI S, et al.. Bell nonlocality, entanglement, and entropic uncertainty in a Heisenberg model under intrinsic decoherence: DM and KSEA interplay effects. Applied Physics B, 2022, 128 (4): 87. |
22 | ZHANG Z Y, LIU J M.. Coherence and entropic uncertainty relation of dipole-coupled qubits under decoherence. Physica A, 2022, 589, 126639. |
23 | 廉熠鋆, 刘金明.. Garfinkle-Horowitz-Strominger黑洞视界附近qubit-qutrit系统量子Fisher信息的保护. 华东师范大学学报 (自然科学版), 2022, (4): 120- 130. |
24 | VIDAL G, WERNER R F.. Computable measure of entanglement. Physical Review A, 2002, 65 (3): 032314. |
/
〈 |
|
〉 |