收稿日期: 2023-03-28
网络出版日期: 2024-05-25
基金资助
国家自然科学基金 (12231012, 11975099)
The impact of relative time scale on the coupling propagation dynamics of information diffusion and opinion formation
Received date: 2023-03-28
Online published: 2024-05-25
一般情况下, 群体意见形成的演化时间尺度可被认为远远大于社交媒体上消息传播的时间尺度. 但是在某些极端场景中, 以上的假设却并不成立. 基于此, 建立了一个消息扩散和意见形成之间的相对时间尺度可调的噪声阈值投票者-UAU (unaware-aware-unaware)模型, 并研究了不同的相对演化速度下社交媒体上的消息传播与人群意见形成之间的相互协同作用对彼此演化动态的影响. 基于平均场理论(mean-field theory, MFT)的分析和Monte Carlo模拟都表明, 相较于意见形成, 消息传播的时间尺度越小越有利于双稳态相的形成, 这是两种动力学的本征差异和它们之间的协同相互作用造成的. 研究发现, 两种动力学间的相对时间尺度不仅影响终态的“正”意见比例, 还影响导致模型发生相变的临界基本再生数的大小; 特别是当“正”意见比例处于不同的水平时, 其随着两种动力学相对时间尺度的变化行为是不同的, 当“正”意见比例较高时, 消息传播的时间尺度相对于意见形成越小则“正”意见比例越大, 反之则相反. 研究填补了相对时间尺度对于协同相互作用耦合动力学影响这一研究领域的空白, 有助于人们更加深入地理解相对时间尺度对耦合动力学演化动态的影响.
刘易文 , 唐明 . 相对时间尺度对消息扩散与意见形成耦合传播动力学的影响[J]. 华东师范大学学报(自然科学版), 2024 , 2024(3) : 156 -170 . DOI: 10.3969/j.issn.1000-5641.2024.03.017
In general, the evolutionary time scale of group opinion formation can be considered significantly larger than the message propagation time scale on social media. However, this assumption does not hold for some extreme scenarios. Based on this, we established a noise threshold voter-UAU (unaware-aware-unaware) coupled model with an adjustable relative time scale between message propagation and opinion formation, and studied the collaborative interaction between two dynamics under different relative evolutionary rates and its effects on each other’s dynamical evolution . Both analyses based on mean field theory and Monte Carlo simulations demonstrate that a smaller time scale for message propagation relative to opinion formation is more favorable for the formation of a bistable phase, which is caused by the inherent differences between the two dynamics and their synergistic interaction. This study identified that the relative time scale between both dynamics not only affects the proportion of “positive” opinions in the final state, but also the critical basic reproduction number for message propagation that leads to a phase transition in the model. In particular, when the proportion of “positive” opinion is at different levels, their behaviors with respect to changes in the relative time scale between the two dynamics differ. When the proportion of “positive” opinions is high, a smaller time scale for message propagation leads to a higher proportion of “positive” opinions, and vice versa. This study addresses a gap in this field regarding the relative time scale’s impact on the dynamics of collaborative interaction coupling. Furthermore, it facilitates a more in-depth understanding of the profound influence of the relative time scale on the evolution dynamics of coupling dynamics.
1 | NEWMAN M E J.. The structure and function of complex networks. Society for Industrial and Applied Mathematics(SIAM) Review, 2003, 45 (2): 167- 256. |
2 | PASTOR-SATORRAS R, VáZQUEZ A, VESPIGNANI A.. Dynamical and correlation properties of the Internet. Physical Review Letters, 2001, 87 (25): 258701. |
3 | COHEN R, EREZ K, BEN-AVRAHAM D, et al.. Resilience of the internet to random breakdowns. Physical Review Letters, 2000, 85 (21): 4626- 4628. |
4 | GALLOS L K, COHEN R, ARGYRAKIS P, et al.. Stability and topology of scale-free networks under attack and defense strategies. Physical Review Letters, 2005, 94 (18): 188701. |
5 | D?RFLER F, CHERTKOV M, BULLO F.. Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110 (6): 2005- 2010. |
6 | SHAO J, HAVLIN S, STANLEY H E.. Dynamic opinion model and invasion percolation. Physical Review Letters, 2009, 103 (1): 018701. |
7 | PASTOR-SATORRAS R, CASTELLANO C, VAN MIEGHEM P, et al.. Epidemic processes in complex networks. Reviews of Modern Physics, 2015, 87 (3): 925- 979. |
8 | KURANT M, THIRAN P.. Layered complex networks. Physical Review Letters, 2006, 96 (13): 138701. |
9 | MUCHA P J, RICHARDSON T, MACON K, et al.. Community structure in time-dependent, multiscale, and multiplex networks. Science, 2010, 328 (5980): 876- 878. |
10 | SZELL M, LAMBIOTTE R, THURNER S.. Multirelational organization of large-scale social networks in an online world. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107 (31): 13636- 13641. |
11 | BAXTER G J, DOROGOVTSEV S N, GOLTSEV A V, et al.. Avalanche collapse of interdependent networks. Physical Review Letters, 2012, 109 (24): 248701. |
12 | BOCCALETTI S, BIANCONI G, CRIADO R, et al.. The structure and dynamics of multilayer networks. Physics Reports, 2014, 544 (1): 1- 122. |
13 | DE DOMENICO M, GRANELL C, PORTER M A, et al.. The physics of spreading processes in multilayer networks. Nature Physics, 2016, 12 (10): 901- 906. |
14 | CENTOLA D. How Behavior Spreads: The Science of Complex Contagions [M]. Princeton, NJ: Princeton University Press, 2018. |
15 | CENTOLA D.. The spread of behavior in an online social network experiment. Science, 2010, 329 (5996): 1194- 1197. |
16 | BAUMANN F, SOKOLOV I M, TYLOO M.. A Laplacian approach to stubborn agents and their role in opinion formation on influence networks. Physica A, 2020, 557, 124869. |
17 | MASTROENI L, VELLUCCI P, NALDI M.. Agent-based models for opinion formation: A bibliographic survey. IEEE Access, 2019, 7, 58836- 58848. |
18 | SOOD V, REDNER S.. Voter model on heterogeneous graphs. Physical Review Letters, 2005, 94 (17): 178701. |
19 | FERNáNDEZ-GRACIA J, SUCHECKI K, RAMASCO J J, et al.. Is the voter model a model for voters?. Physical Review Letters, 2014, 112 (15): 158701. |
20 | VIEIRA A R, ANTENEODO C.. Threshold q-voter model. Physical Review E, 2018, 97 (5): 052106. |
21 | CARRO A, TORAL R, SAN MIGUEL M.. The noisy voter model on complex networks. Scientific Reports, 2016, 6 (1): 24775. |
22 | DRUCKMAN J N, PETERSON E, SLOTHUUS R.. How elite partisan polarization affects public opinion formation. American Political Science Review, 2013, 107 (1): 57- 79. |
23 | BOND R M, FARISS C J, JONES J J, et al.. A 61-million-person experiment in social influence and political mobilization. Nature, 2012, 489 (7415): 295- 298. |
24 | LEE W, YANG S G, KIM B J.. The effect of media on opinion formation. Physica A, 2022, 595, 127075. |
25 | OHNISHI T. Modelling the influence of social media on collective [J]. American Journal of Physics and Applications 2020; 8(6): 78-87 |
26 | GABORE S M, DENG X J.. Opinion formation in social media: The influence of online news dissemination on Facebook posts. Communicatio, 2018, 44 (2): 20- 40. |
27 | DANZIGER M M, SHEKHTMAN L M, BASHAN A, et al. Vulnerability of interdependent networks and networks of networks [G] // Interconnected Networks, Understanding Complex Systems. Cham: Springer, 2016: 79-99. |
28 | KENETT D Y, HAVLIN S.. Network science: A useful tool in economics and finance. Mind & Society, 2015, 14, 155- 167. |
29 | BRUMMITT C D, KOBAYASHI T.. Cascades in multiplex financial networks with debts of different seniority. Physical Review E, 2015, 91 (6): 062813. |
30 | BLASIUS B, HUPPERT A, STONE L.. Complex dynamics and phase synchronization in spatially extended ecological systems. Nature, 1999, 399 (6734): 354- 359. |
31 | NICOSIA V, SKARDAL P S, ARENAS A, et al.. Collective phenomena emerging from the interactions between dynamical processes in multiplex networks. Physical Review Letters, 2017, 118 (13): 138302. |
32 | CAI W R, CHEN L, GHANBARNEJAD F, et al.. Avalanche outbreaks emerging in cooperative contagions. Nature Physics, 2015, 11, 936- 940. |
33 | HéBERT-DUFRESNE L, ALTHOUSE B M.. Complex dynamics of synergistic coinfections on realistically clustered networks. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112 (33): 10551- 10556. |
34 | CHEN L, GHANBARNEJAD F, CAI W R, et al.. Outbreaks of coinfections: The critical role of cooperativity. Europhysics Letters, 2013, 104 (5): 50001. |
35 | CHEN L, GHANBARNEJAD F, BROCKMANN D.. Fundamental properties of cooperative contagion processes. New Journal of Physics, 2017, 19 (10): 103041. |
36 | WANG W, LIU Q H, LIANG J H, et al.. Coevolution spreading in complex networks. Physics Reports, 2019, 820, 1- 51. |
37 | KARRER B, NEWMAN M E J.. Competing epidemics on complex networks. Physical Review E, 2011, 84 (3): 036106. |
38 | DE OLIVEIRA M M, DICKMAN R.. The advantage of being slow: The quasi-neutral contact process. PloS One, 2017, 12 (8): e0182672. |
39 | WANG H J, CHEN C Y, QU B, et al.. Epidemic mitigation via awareness propagation in communication networks: the role of time scales. New Journal of Physics, 2017, 19 (7): 073039. |
40 | DA SILVA P C V, VELáSQUEZ-ROJAS F, CONNAUGHTON C, et al.. Epidemic spreading with awareness and different timescales in multiplex networks. Physical Review E, 2019, 100 (3): 032313. |
41 | VENTURA P C, MORENO Y, RODRIGUES F A.. Role of time scale in the spreading of asymmetrically interacting diseases. Physical Review Research, 2021, 3 (1): 013146. |
42 | GRANOVETTER M.. Threshold models of collective behavior. American Journal of Sociology, 1978, 83 (6): 1420- 1443. |
43 | GRANOVETTER M, SOONG R.. Threshold models of diffusion and collective behavior. Journal of Mathematical Sociology, 1983, 9 (3): 165- 179. |
44 | WATTS D J.. A simple model of global cascades on random networks. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99 (9): 5766- 5771. |
/
〈 |
|
〉 |