第一性原理计算

异质固液界面中多界面态的原子模拟研究

  • 刘娇娇 ,
  • 梁洪涛 ,
  • 杨洋
展开
  • 华东师范大学 物理与电子科学学院 凝聚态物理研究所, 上海 200241

收稿日期: 2023-09-19

  网络出版日期: 2024-05-25

基金资助

国家自然科学基金(11874147); 上海市自然科学基金(23ZR1420200)

Research on atomistic simulation of the coexistence of multiple interfacial states at heterogeneous solid-liquid interface

  • Jiaojiao LIU ,
  • Hongtao LIANG ,
  • Yang YANG
Expand
  • Institute of Condensed Matter Physics, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China

Received date: 2023-09-19

  Online published: 2024-05-25

摘要

在晶界和固体表面系统中, 针对界面“complexion” (或界面相、界面态) 转变及其调控相关的研究, 近年来呈现出持续增长的关注趋势. 与此同时, 这些界面相之间的转变问题, 在异质固液界面体系中尚未得到足够的关注. 使用分子动力学模拟方法预言了处于Pb熔点温度之上, Cu(111)/Pb(L)固液界面体系中存在的多界面相共存的界面状态; 观察到4种单原子层的界面状态, 即2种界面CuPb层状合金液相以及2种界面预凝固的Pb层状固相, 共存于固体Cu和液体Pb之间的双原子界面层内; 通过计算界面相在面内共存的各种性质空间分布, 模拟出了该体系多界面相共存的力学、热力学和动力学性质的不均匀性和面内各向异性; 计算获得的界面态热力学与动力学性质数值显著区别于固相Cu和液相Pb的相应性质. 另外, 测量得到的Cu(111)/Pb(L)固液界面态共存的“相平衡”条件具有共晶二元合金相图特征, 而不是CuPb合金的偏晶相图. 故所报道的数据有望为调节异质形核和润湿过程提供新的理论思路.

本文引用格式

刘娇娇 , 梁洪涛 , 杨洋 . 异质固液界面中多界面态的原子模拟研究[J]. 华东师范大学学报(自然科学版), 2024 , 2024(3) : 54 -63 . DOI: 10.3969/j.issn.1000-5641.2024.03.006

Abstract

Engineering interfacial complexion (or phase) transitions has been a growing trend in grain boundary and solid surface systems. In addition, little attention has been paid to chemically heterogeneous solid-liquid interfaces. In this study, atomistic simulations are conducted to reveal the coexistence of novel in-plane multi-interfacial states in a Cu(111)/Pb(L) interface at a temperature just above the Pb freezing point. Four monolayer interfacial states, that is, two CuPb alloy liquids and two pre freezing Pb solids, are observed to coexist within two interfacial layers sandwiched between the bulk solid Cu and bulk liquid Pb. Computation of the spatial variations of various properties along the direction normal to the in-plane solid-liquid boundary lines for both interfacial layers presents a rich and varied picture of inhomogeneity and anisotropy in the mechanical, thermodynamical, and dynamical properties. The “bulk” values extracted from the in-plane profiles suggest that each interfacial state examined has distinct equilibrium values and significantly deviates from those of the bulk solid and liquid phases. It also indicates that the “complexion (or phase) diagrams” for the Cu(111)/Pb(L) interface bear a resemblance to those of the eutectic binary alloy systems as opposed to the monotectic phase diagram for the bulk CuPb alloy. The reported data supports the development of interfacial complexion (or phase) diagrams and interfacial phase rules and provides new guidelines for regulating heterogeneous nucleation and wetting processes.

参考文献

1 TANG M, CARTER W C, CANNON R M.. Diffuse interface model for structural transitions of grain boundaries. Physical Review B, 2006, 73 (2): 024102.
2 FROLOV T, OLMSTED D L, ASTA M, et al.. Structural phase transformations in metallic grain boundaries. Nature Communications, 2013, 4 (1): 1899.
3 BARAM M, CHATAIN D, KAPLAN W D.. Nanometer-thick equilibrium films: The interface between thermodynamics and atomistics. Science, 2011, 332 (6026): 206- 209.
4 BISHOP C M, TANG M, CANNON R M, et al.. Continuum modelling and representations of interfaces and their transitions in materials. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2006, 422 (1-2): 102- 114.
5 CANTWELL P R, TANG M, DILLON S J, et al.. Grain boundary complexions. Acta Materialia, 2014, 62, 1- 48.
6 KUNDU A, ASL K M, LUO J, et al.. Identification of a bilayer grain boundary complexion in Bi-doped Cu. Scripta Materialia, 2013, 68 (2): 146- 149.
7 FROLOV T, OLMSTED D L, ASTA M, et al.. Structural phase transformations in metallic grain boundaries. Nature Communications, 2013, 4, 1899.
8 PEREIRO-LóPEZ E, LUDWIG W, BELLET D, et al.. Direct evidence of nanometric invasionlike grain boundary penetration in the Al/Ga system. Physical Review Letters, 2005, 95 (21): 215501.
9 LUO J.. Let thermodynamics do the interfacial engineering of batteries and solid electrolytes. Energy Storage Materials, 2019, 21, 50- 60.
10 DILLON S J, TANG M, CARTER W C, et al.. Complexion: A new concept for kinetic engineering in materials science. Acta Materialia, 2007, 55 (18): 6208- 6218.
11 FROLOV T.. Effect of interfacial structural phase transitions on the coupled motion of grain boundaries: A molecular dynamics study. Applied Physics Letters, 2014, 104 (21): 211905.
12 FROLOV T, MISHIN Y.. Phases, phase equilibria, and phase rules in low-dimensional systems. Journal of Chemical Physics, 2015, 143 (4): 044706.
13 FROLOV T, ASTA M, MISHION Y.. Phase transformations at interfaces: Observations from atomistic modeling. Current Opinion in Solid State & Materials Science, 2016, 20 (5): 308- 315.
14 LI X, LU K.. Improving sustainability with simpler alloys. Science, 2019, 364 (6442): 733- 734.
15 HECKMAN N M, FOILES S M, O'BRIEN C J.. New nanoscale toughening mechanisms mitigate embrittlement in binary nanocrystalline alloys. Nanoscale, 2018, 10 (45): 21231- 21243.
16 O'BRIEN C J, BARR C M, PRICE P M, et al.. Grain boundary phase transformations in PtAu and relevance to thermal stabilization of bulk nanocrystalline metals. Journal of Materials Science, 2018, 53 (4): 2911- 2927.
17 PETER N J, FROLOV T, DUARTE M J, et al.. Segregation-Induced nanofaceting transition at an asymmetric tilt grain boundary in copper. Physical Review Letters, 2018, 121 (25): 255502.
18 MEIBERS T, FROLOV T, RUDD R E, et al.. Observations of grain-boundary phase transformations in an elemental metal. Nature, 2020, 579 (7799): 375.
19 BARR C M, FOILES S M, ALKAYYALI M, et al.. The role of grain boundary character in solute segregation and thermal stability of nanocrystalline Pt-Au. Nanoscale, 2021, 13 (6): 3552- 3563.
20 TUCHINDA N, SCHUH C A.. Grain size dependencies of intergranular solute segregation in nanocrystalline materials. Acta Materialia, 2022, 226, 117614.
21 WYNBLATT P, CHATAIN D, RANGUIS A.. STM study of Bi-on-Cu(100). Surface Science, 2007, 601 (6): 1623- 1629.
22 PICKERING I, PALEICO M, SIRKIN Y A P, et al. Grand canonical investigation of the quasi liquid layer of ice: Is it liquid? [J]. The Journal of Physical Chemistry B, 2018, 122(18): 4880-4890.
23 TANG J, LAMBIE S, MEFTAHI N, et al.. Unique surface patterns emerging during solidification of liquid metal alloys. Nature Nanotechnology, 2021, 16 (4): 431- 439.
24 WANG M, PENG Y, WANG H, et al.. Coarsening of polycrystalline patterns in atomically thin surface crystals. Applied Physics Letters, 2021, 119 (12): 123102.
25 GABRISCH H, KJELDGAARD L, JOHNSON E, et al.. Equilibrium shape and interface roughening of small liquid Pb inclusions in solid Al. Acta Materialia, 2001, 49 (20): 4259- 4269.
26 OH S H, KAUFFMANN Y, SCHEU C, et al.. Ordered liquid aluminum at the interface with sapphire. Science, 2005, 310 (5748): 661- 663.
27 MOORTHY S K E, MENDELEV M I, HOWE J M.. The influence of spatial and temporal averaging on interpretation of HRTEM images of solid-liquid interfaces. Ultramicroscopy, 2013, 124, 40- 45.
28 SCHNEIDER M M, HOWE J M.. Observation of interface dynamics and Cu island formation at a crystalline Si/liquid Al-alloy interface. Acta Materialia, 2017, 133, 224- 229.
29 YANG G Q, LI J F, SHI Q W, et al.. Structural and dynamical properties of heterogeneous solid-liquid Ta-Cu interfaces: A molecular dynamics study. Computational Materials Science, 2014, 86, 64- 72.
30 KERN J L, BARRY P R, LAIRD B B.. Characterization of the Al-Ga solid-liquid interface using classical and ab initio molecular dynamics simulation. Physical Review Materials, 2020, 4 (4): 043604.
31 PALAFOX-HERNANDEZ J P, LAIRD B B.. Orientation dependence of heterogeneous nucleation at the Cu-Pb solid-liquid interface. Journal of Chemical Physics, 2016, 145 (21): 211914.
32 YANG Y, ASTA M, LAIRD B B.. Solid-Liquid interfacial premelting. Physical Review Letters, 2013, 110 (9): 096102.
33 LIANG H T, LAIRD B B, ASTA M, et al.. In-plane characterization of structural and thermodynamic properties for steps at faceted chemically heterogeneous solid/liquid interfaces. Acta Materialia, 2018, 143, 329- 337.
34 WYNBLATT P, SHI Z.. Relation between grain boundary segregation and grain boundary character in FCC alloys. Journal of Materials Science, 2005, 40 (11): 2765- 2773.
35 LUO J.. Grain boundary complexions: The interplay of premelting, prewetting, and multilayer adsorption. Applied Physics Letters, 2009, 95 (7): 071911.
36 RICKMAN J M, LUO J.. Layering transitions at grain boundaries. Current Opinion in Solid State & Materials Science, 2016, 20 (5): 225- 230.
37 WYNBLATT P, CHATAIN D.. Solid-state wetting transitions at grain boundaries. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2008, 495 (1-2): 119- 125.
38 TANG M, CARTER W C, CANNON R M.. Grain boundary transitions in binary alloys. Physical Review Letters, 2006, 97 (7): 075502.
39 CLARKE D R, SHAW T M, PHILIPSE A P, et al.. Possible electrical double-layer contribution to the equilibrium thickness of intergranular glass films in polycrystalline ceramics. Journal of the American Ceramic Society, 1993, 76 (5): 1201- 1204.
40 MISHIN Y, BOETTINGER W J, WARREN J A, et al.. Thermodynamics of grain boundary premelting in alloys. I. Phase-field modeling. Acta Materialia, 2009, 57 (13): 3771- 3785.
41 LUO J.. Developing interfacial phase diagrams for applications in activated sintering and beyond: current status and future directions. Journal of the American Ceramic Society, 2012, 95 (8): 2358- 2371.
42 GAO B, GAO P Y, LU S H, et al.. Interface structure prediction via CALYPSO method. Science Bulletin, 2019, 64 (5): 301- 309.
43 HOYT J J, GARVIN J W, WEBB E B, et al.. An embedded atom method interatomic potential for the Cu-Pb system. Modelling and Simulation in Materials Science and Engineering, 2003, 11 (3): 287- 299.
44 WEBB E B, GREST G S, HEINE D R.. Precursor film controlled wetting of Pb on Cu. Physical Review Letters, 2003, 91 (23): 236102.
45 HEINE D R, GREST G S, WEBB E B.. Surface wetting of liquid nanodroplets: Droplet-size effects. Physical Review Letters, 2005, 95 (10): 107801.
46 PALAFOX-HERNANDEZ J P, LAIRD B B, ASTA M.. Atomistic characterization of the Cu-Pb solid-liquid interface. Acta Materialia, 2011, 59 (8): 3137- 3144.
47 PLIMPTON S.. Fast parallel algorithms for short-range molecular dynamics. Journal of Computational Physics, 1995, 117 (1): 1- 19.
48 YANG Y, OLMSTED D L, ASTA M, et al.. Atomistic characterization of the chemically heterogeneous Al-Pb solid-liquid interface. Acta Materialia, 2012, 60 (12): 4960- 4971.
49 CANTWELL P R, FROLOV T, RUPERT T J, et al.. Grain boundary complexion transitions. Annual Review of Materials Research, 2020, 50, 465- 492.
50 DU H, LIANG H T, YANG Y.. Molecular dynamics simulation of monolayer confined ice-water phase equilibrium. Acta Chimica Sinica, 2018, 76 (6): 483- 490.
51 ZHANG X, LAIRD B B, LIANG H T, et al.. Atomistic characterization of the SiO2 high-density liquid/low-density liquid interface. Journal of Chemical Physics, 2022, 157 (13): 134703.
52 LU W L, LIANG H T, MA X M, et al.. Atomistic simulation study of the FCC and BCC crystal-melt interface stresses. Surfaces and Interfaces, 2022, 28, 101639.
53 EMUNA M, GREENBERG Y, HEVRONI R, et al.. Phase diagrams of binary alloys under pressure. Journal of Alloys and Compounds, 2016, 687, 360- 369.
54 HUDON P, JUNG I H, BAKER D R.. Effect of pressure on liquid-liquid miscibility gaps: A case study of the systems CaO-SiO2, MgO-SiO2, and CaMgSi2O6-SiO2. Journal of Geophysical Research-Solid Earth, 2004, 109 (B3): B03207.
55 MA X M, LIANG H T, LU W L, et al.. Atomistic characterization of the dispersed liquid droplet in immiscible Al-Pb alloy. Journal of Materials Research and Technology, 2021, 15, 2993- 3004.
56 YANG Y, LAIRD B B.. Droplet spreading on a surface exhibiting solid-liquid interfacial premelting. Acta Materialia, 2018, 143, 319- 328.
文章导航

/