原子、分子和光物理

谐振子中的Floquet两体问题

  • 严东帆
展开
  • 华东师范大学 精密光谱科学与技术国家重点实验室, 上海 200241
严东帆, 男, 硕士研究生, 研究方向为冷原子气体理论. E-mail: yan_dongfan@163.com

收稿日期: 2023-02-24

  网络出版日期: 2024-05-25

基金资助

国家自然科学基金(12004115); 上海市科技创新计划——扬帆计划 (20YF1411600)

Floquet two-body problem in a harmonic trap

  • Dongfan YAN
Expand
  • State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China

Received date: 2023-02-24

  Online published: 2024-05-25

摘要

由于近期在光诱导的Feshbach共振等实验技术上的发展, 具有含时相互作用的量子气体的动力学问题引起了学界广泛的兴趣. 人们已经在这一类超冷原子系统中观察到了一系列诸如Farady图案和玻色焰火等新颖的动力学行为. 研究了具有周期性调节相互作用强度的谐振子势阱中的两原子动力学问题. 虽然Hamilton量的时间依赖性, 使系统的能量不再是一个守恒量, 但仍然可以利用随时间周期变化的Hamilton量的Floquet理论定义其准能量. 推导出了两体问题准能量的精确方程. 通过数值求解这些方程, 揭示了两体准能谱在不同驱动参数或频率下展现出的各种新颖的动力学行为.

本文引用格式

严东帆 . 谐振子中的Floquet两体问题[J]. 华东师范大学学报(自然科学版), 2024 , 2024(3) : 73 -83 . DOI: 10.3969/j.issn.1000-5641.2024.03.008

Abstract

The dynamics of quantum gases with time-varying interactions have attracted research interests owing to recent advances in experimental techniques such as optical Feshbach resonance. A range of novel dynamic behaviors including the Farady pattern and Bose fireworks have been observed in these systems. In this research, the dynamic problem of two harmonically trapped atoms with periodically modulating interaction strength is investigated. Because of the Hamiltonian time dependence, the system energy is an unconserved quantity. However, we may continue to utilize the Floquet theory for the time-periodic Hamiltonian and define its quasi-energy. The exact equations for the quasi-energies of the two-body problem are derived. Upon numerically solving these equations, we identify that the two-body quasi-energy spectrum exhibits various novel behaviors for different driven parameters or frequencies.

参考文献

1 CHIN C, GRIMM R, JULIENNE P, et al.. Feshbach resonances in ultracold gases. Reviews of Modern Physics, 2010, 82 (2): 1225.
2 PETHICK C J, SMITH H. Bose-Einstein Condensation in Dilute Gases [M]. Cambridge : Cambridge University Press, 2008.
3 GIORGINI S, PITAEVSKII L P, STRINGARI S.. Theory of ultracold atomic Fermi gases. Reviews of Modern Physics, 2008, 80 (4): 1215.
4 HUANG K, YANG C N.. Quantum-mechanical many-body problem with hard-sphere interaction. Physical Review, 1957, 105 (3): 767- 775.
5 BUSCH T, ENGLERT B G, RZA?EWSKI K, et al.. Two cold atoms in a harmonic trap. Foundations of Physics, 1998, 28 (4): 549- 559.
6 STALIUNAS K, LONGHI S, DE VALCáRCEL G J.. Faraday patterns in Bose-Einstein condensates. Physical Review Letters, 2002, 89 (21): 210406.
7 CLARK L W, GAJ A, FENG L, et al.. Collective emission of matter-wave jets from driven Bose–Einstein condensates. Nature, 2017, 551 (7680): 356- 359.
8 FU H, FENG L, ANDERSON B M, et al.. Density waves and jet emission asymmetry in Bose fireworks. Physical Review Letters, 2018, 121 (24): 243001.
9 SYKES A G, LANDA H, PETROV D S.. Two- and three-body problem with Floquet-driven zero-range interactions. Physical Review A, 2017, 95 (6): 062705.
10 SHIRLEY J H.. Solution of the Schr?dinger equation with a Hamiltonian periodic in time. Physical Review, 1965, 138 (4B): B979- B987.
11 SAMBE H.. Steady states and quasienergies of a quantum-mechanical system in an oscillating field. Physical Review A, 1973, 7 (6): 2203- 2213.
12 LI W J, REICHL L E.. Floquet scattering through a time-periodic potential. Physical Review B, 1999, 60 (23): 15732- 15741.
13 BETHE H, PEIERLS R.. Quantum theory of the diplon. Proceedings of the Royal Society of London. Series A–Mathematical and Physical Sciences, 1935, 148 (863): 146- 156.
14 BURTON T A, MULDOWNEY J S.. A generalized Floquet theory. Archiv Der Mathematik, 1968, 19, 188- 194.
15 LANDAU L D, LIFSHITZ E M. Quantum Mechanics: Non-Relativistic Theory [M]. 3rd ed. England: Pergamon Press, 2013: 504-507.
16 BILITEWSKI T, COOPER N R.. Scattering theory for Floquet-Bloch states. Physical Review A, 2015, 91 (3): 033601.
17 ZEL’DOVICH Y B. The quasienergy of a quantum-mechanical system subjected to a periodic action [J]. Soviet Physics JEPT, 1967, 24(5): 1006-1008.
文章导航

/