物理学与电子学

ATLAS 2.76 TeV单喷注实验数据对CT18NNLO部分子分布函数的影响

  • 徐颖 ,
  • 范红豪 ,
  • 沙依甫加马力·达吾来提
展开
  • 1. 新疆大学 物理科学与技术学院, 乌鲁木齐 830046
    2. 北京师范大学 核科学与技术学院, 北京 100875

收稿日期: 2022-12-07

  网络出版日期: 2024-07-23

基金资助

国家自然科学基金 (11965020)

Impact of ATLAS 2.76 TeV inclusive jet experimental data on CT18NNLO parton distribution functions

  • Ying XU ,
  • Honghao FAN ,
  • Sayipjamal DULAT
Expand
  • 1. School of Physics Science and Technology, Xinjiang University, Urumqi 830046, China
    2. College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, China

Received date: 2022-12-07

  Online published: 2024-07-23

摘要

通过ePump (error PDF (parton distribution function) updating method package)研究了大型强子对撞机(large hadron collider, LHC)在质心能量$ \sqrt{s}=2.76 $ TeV时, 来自ATLAS (a toroidal LHC apparatus)探测器单喷注的双微分散射截面的实验数据对CT18NNLO (next-to-next-to-leading order)部分子分布函数(PDF)的影响. 首先, 使用CT18NNLO 部分子分布函数计算了单喷注的双微分散射截面, 观察到理论预测与实验数据符合得较好; 其次, 计算了单喷注双微分散射截面的理论预测值与CT18NNLO胶子部分子分布函数的关联余弦$\mathrm{c}\mathrm{o}\mathrm{s}\phi$; 最后, 使用ePump更新了CT18NNLO 部分子分布函数, 并研究了实验数据与全局拟合数据间的冲突. 通过比较在$ Q=100 $ GeV时CT18NNLO 胶子部分子分布函数和ePump更新的胶子部分子分布函数, 发现ATLAS 2.76 TeV单喷注双微分散射截面实验数据在大和小的动量分数$ x $区域对CT18NNLO 胶子部分子分布函数的约束较小.

本文引用格式

徐颖 , 范红豪 , 沙依甫加马力·达吾来提 . ATLAS 2.76 TeV单喷注实验数据对CT18NNLO部分子分布函数的影响[J]. 华东师范大学学报(自然科学版), 2024 , 2024(4) : 30 -39 . DOI: 10.3969/j.issn.1000-5641.2024.04.003

Abstract

This study aimed to investigate the impact of the inclusive jet double differential cross-section data retrieved from the ATLAS at the large hadron collider(LHC), at the center-of-mass energy of $ \sqrt{s}=2.76 $ TeV, on CT18NNLO parton distribution functions(PDFs) by applying the error PDF updating method package(ePump). First, the inclusive jet double differential cross-sections were calculated with non-perturbative correction using the CT18NNLO PDFs. It was observed that the theoretical predictions concurred with the experimental data. Thereafter, the correlation $ \mathrm{c}\mathrm{o}\mathrm{s}\phi $ was established between theoretical predictions for the inclusive jet double differential cross-sections and the CT18NNLO gluon PDFs. Finally, the ePump was applied to update the CT18NNLO PDFs; the differences between these data and the original global fitting data were investigated. The CT18NNLO gluon PDFs and ePump updated gluon PDFs were compared at $ Q=100 $ GeV, and it was found that the ATLAS 2.76 TeV inclusive jet double differential cross-sections data could slightly constrain the CT18NNLO gluon PDFs at both small and large $ x $ regions.

参考文献

1 GAO J, GUZZI M, HUSTON J, et al.. CT10 next-to-next-to-leading order global analysis of QCD. Physical Review D, 2014, 89 (3): 3009- 3037.
2 DULAT S, HOU T J, GAO J, et al.. New parton distribution functions from a global analysis of quantum chromodynamics. Physical Review D, 2016, 93 (3): 3006- 3045.
3 HOU T J, GAO J, HOOBS T J, et al.. New CTEQ global analysis of quantum chromodynamics with high-precision data from the LHC. Physical Review D, 2021, 103 (1): 4013- 4102.
4 MARTIN A D, STIRLING W J, THORNE R S, et al.. Parton distributions for the LHC. The European Physical Journal C, 2009, 63 (2): 189- 285.
5 GIELE W T, KELLER S.. Implications of hadron collider observables on parton distribution function uncertainties. Physical Review D, 1998, 58 (9): 094023.
6 PUMPLIN J, STUMP D, BROCK R, et al.. Uncertainties of predictions from parton distribution functions. II. The Hessian method. Physical Review D, 2001, 65 (1): 014013.
7 SCHMIDT C, PUMPLIN J, YUAN C P.. Updating and optimizing error parton distribution function sets in the Hessian approach. Physical Review D, 2018, 98 (9): 4005- 4028.
8 HOU T J, YU Z, DULAT S, et al.. Updating and optimizing error parton distribution function sets in the Hessian approach. II. Physical Review D, 2019, 100 (11): 4024- 4050.
9 ABLAT A, DULAT S, RASHIDIN R, et al.. The impact of single top data on CT14nnlo PDFs. International Journal of Theoretical Physics, 2020, 59 (10): 3023- 3031.
10 JANDAOLET Q, ABLAT A, OBUL P, et al.. ResBos and ePump analysis on ATLAS 8 TeV Z Boson transverse momentum distributions. International Journal of Theoretical Physics, 2021, 60 (8): 3013- 3023.
11 KHACHATRYAN V, SIRUNYAN A M, TUMASYAN A, et al.. Measurement of the inclusive jet cross section in pp collisions at $ \sqrt{{s}}=2.76\;\text{TeV} $. The European Physical Journal C, 2016, 76 (5): 265.
12 ATLAS Collaboration.. Measurement of the inclusive jet cross-section in pp collisions at $ \sqrt{{s}}=2.76\;\text{TeV} $ and comparison to the inclusive jet cross-section at $ \sqrt{{s}}=7\;\text{TeV} $ using the ATLAS detector. The European Physical Journal C, 2013, 73 (8): 2509.
13 CHATRCHYAN S, KHACHATRYAN V, SIRUNYAN A M, et al.. Measurement of the inclusive jet cross section in pp collisions at $ \sqrt{{s}}=7\;\text{TeV} $. Physical Review Letters, 2011, 107 (13): 132001.
14 ATLAS Collaboration.. Measurement of inclusive jet and dijet cross sections in proton-proton collisions at 7 TeV centre-of-mass energy with the ATLAS detector. The European Physical Journal C, 2011, 71 (2): 1512.
15 CMS Collaboration.. Measurement of the double-differential inclusive jet cross section in proton–proton collisions at $ \sqrt{{s}}=13\;\text{TeV} $. The European Physical Journal C, 2016, 76 (8): 451.
16 ATLAS Collaboration.. Measurement of inclusive jet and dijet cross-sections in proton-proton collisions at $ \sqrt{{s}}=13\;\text{TeV} $ with the ATLAS detector. Journal of High Energy Physics, 2018, 2018 (5): 195.
17 CMS Collaboration.. Measurement and QCD analysis of double-differential inclusive jet cross sections in pp collisions at $ \sqrt{{s}}=8\;\text{TeV} $ and cross section ratios to 2.76 and 7 TeV. Journal of High Energy Physics, 2017, 2017 (3): 156.
18 CATANI S, DOKSHITZER Y L, SEYMOUR M H, et al. Longitudinally-invariant k-clustering algorithms for hadron-hadron collisions [J]. Nuclear Physics B, 1993, 406(1/2): 187–224.
19 DOKSHITZER Y L, LEDER G D, MORETTI S, et al.. Better jet clustering algorithms. Journal of High Energy Physics, 1997, 1997, (8): 001.
20 CACCIARI M, SALAM G P, SOYEZ G.. The anti-kt jet clustering algorithm. Journal of High Energy Physics, 2008, (4): 063.
21 NAGY Z.. Next-to-leading order calculation of three-jet observables in hadron-hadron collisions. Physical Review D, 2003, 68 (9): 094002.
22 CARLI T, CLEMENTS D, COOPER S A, et al.. A posteriori inclusion of parton density functions in NLO QCD final-state calculations at hadron colliders: The APPLGRID project. The European Physical Journal C, 2010, 66 (3/4): 503- 524.
23 NADOLSKY P M, LAI H L, CAO Q H, et al.. Implications of CTEQ global analysis for collider observables. Physical Review D, 2008, 78 (1): 013004.
24 DULAT S, HOU T J, GAO J, et al.. Intrinsic charm parton distribution functions from CTEQ-TEA global analysis. Physical Review D, 2014, 89 (7): 073004.
文章导航

/