物理学与电子学

星际分子1-氰基-1,3-丁二烯的气相合成机制研究

  • 郑慧敏 ,
  • 白西林 ,
  • 龚起昂 ,
  • 杨涛
展开
  • 华东师范大学 精密光谱科学与技术国家重点实验室, 上海 200241

收稿日期: 2023-04-13

  录用日期: 2023-05-19

  网络出版日期: 2024-07-23

基金资助

上海市自然科学基金 (22ZR1421400)

Gas phase formation mechanism of the interstellar molecule 1-cyano-1,3-butadiene

  • Huimin ZHENG ,
  • Xilin BAI ,
  • Qi’ang GONG ,
  • Tao YANG
Expand
  • State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China

Received date: 2023-04-13

  Accepted date: 2023-05-19

  Online published: 2024-07-23

摘要

为深入了解星际有机腈分子的动力学生成机制, 结合同步辐射真空紫外光电离实验和量子化学计算, 研究了高温星际环境中氰甲基自由基 (·CH2CN) 与丙炔 (C3H4) 的反应机制. 通过分析光电离质谱与光电离效率图, 发现反应可能主要产生1-氰基-1,3-丁二烯开链异构体. 继而, 在B3LYP/cc-pVTZ水平上计算了反应势能面, 发现氰甲基自由基可无势垒地加成到丙炔上, 主要产生gauche-E-1-氰基-1,3-丁二烯和E-1-氰基-1,3-丁二烯这两种产物, 而热力学上更稳定的产物吡啶的生成概率较小.

本文引用格式

郑慧敏 , 白西林 , 龚起昂 , 杨涛 . 星际分子1-氰基-1,3-丁二烯的气相合成机制研究[J]. 华东师范大学学报(自然科学版), 2024 , 2024(4) : 57 -64 . DOI: 10.3969/j.issn.1000-5641.2024.04.006

Abstract

In this study, a combination of synchrotron vacuum ultraviolet photoionization experiments and quantum chemical calculations was employed to investigate the reaction mechanism between cyanomethyl radicals (·CH2CN) and propyne (C3H4) in high-temperature interstellar environments. The aim was to gain further insights into the formation mechanism of interstellar organic nitriles. By analyzing the photoionization mass spectra and photoionization efficiency curves, it was determined that the reaction may predominantly yield the open-chain isomers of 1-cyano-1,3-butadiene. Additionally, the reaction potential energy surface was explored at the B3LYP/cc-pVTZ level, revealing a barrierless addition of the cyanomethyl radical to acetylene. This addition mainly leads to the formation of gauche-E-1-cyano-1,3-butadiene and/or E-1-cyano-1,3-butadiene. Conversely, the more thermodynamically stable product, pyridine, exhibits a lower likelihood of formation.

参考文献

1 MCGUIRE B A.. 2018 Census of interstellar, circumstellar, extragalactic, protoplanetary disk, and exoplanetary molecules. The Astrophysical Journal Supplement Series, 2018, 239 (2): 17.
2 CESARONI R, SáNCHEZ-MONGE á, BELTRáN M, et al.. Chasing discs around O-type (proto) stars: Evidence from ALMA observations. Astronomy & Astrophysics, 2017, 602, A59.
3 BANERJEE A, GANGULY G, TRIPATHI R, et al.. Unearthing the mechanism of prebiotic nitrile bond reduction in hydrogen cyanide through a curious association of two molecular radical anions. Chemistry–A European Journal, 2014, 20 (21): 6348- 6357.
4 STEVENSON J, LUNINE J, CLANCY P.. Membrane alternatives in worlds without oxygen: Creation of an azotosome. Science Advances, 2015, 1 (1): e1400067.
5 SEPHTON M A.. Organic compounds in carbonaceous meteorites. Natural Product Reports, 2002, 19 (3): 292- 311.
6 MCGUIRE B A, LOOMIS R A, BURKHARDT A M, et al.. Detection of two interstellar polycyclic aromatic hydrocarbons via spectral matched filtering. Science, 2021, 371 (6535): 1265- 1269.
7 LI K, LI A, XIANG F.. Probing the missing link between the diffuse interstellar bands and the total-to-selective extinction ratio I. Extinction versus reddening. Monthly Notices of the Royal Astronomical Society, 2019, 489 (1): 708- 713.
8 TIELENS A.. The molecular universe. Reviews of Modern Physics, 2013, 85 (3): 1021- 1081.
9 RICCA A, BAUSCHLICHER JR C W, BAKES E.. A computational study of the mechanisms for the incorporation of a nitrogen atom into polycyclic aromatic hydrocarbons in the Titan haze. Icarus, 2001, 154 (2): 516.
10 MCMURTRY B M, TURNER A M, SAITO S E, et al.. On the formation of niacin (vitamin B3) and pyridine carboxylic acids in interstellar model ices. Chemical Physics, 2016, 472, 173- 184.
11 DORMAN P M, ESSELMAN B J, CHANGALA P B, et al.. Rotational spectrum of anti-and gauche-4-cyano-1-butyne (C5H5N)–An open-chain isomer of pyridine. Journal of Molecular Spectroscopy, 2022, 385, 111604.
12 ENDRES C P, SCHLEMMER S, SCHILKE P, et al.. The cologne database for molecular spectroscopy, CDMS, in the virtual atomic and molecular data centre, VAMDC. Journal of Molecular Spectroscopy, 2016, 327, 95.
13 BETTENS R, LEE H H, HERBST E.. The importance of classes of neutral-neutral reactions in the production of complex interstellar molecules. The Astrophysical Journal, 1995, 443, 664- 674.
14 PARKER D S, KAISER R I, KOSTKO O, et al.. On the formation of pyridine in the interstellar medium. Physical Chemistry Chemical Physics, 2015, 17 (47): 32000- 32008.
15 SOORKIA S, TAATJES C A, OSBORN D L, et al.. Direct detection of pyridine formation by the reaction of CH (CD) with pyrrole: A ring expansion reaction. Physical Chemistry Chemical Physics, 2010, 12 (31): 8750- 8758.
16 ETIM E E, ADELAGUN R O A, ANDREW C, et al.. Optimizing the searches for interstellar heterocycles. Advances in Space Research, 2021, 68 (8): 3508- 3520.
17 WUYTS S, SCHREIBER N M F, VAN DER WEL A, et al.. Galaxy structure and mode of star formation in the sfr-mass plane from z~2.5 to z~0.1. The Astrophysical Journal, 2011, 742 (2): 96.
18 SUN B, HUANG C, CHEN S, et al.. The oretical study on reaction mechanism of ground-state cyano radical with 1,3-butadiene: Prospect of pyridine formation. The Journal of Physical Chemistry A, 2014, 118 (36): 7715- 7724.
19 TAATJES C A, HANSEN N, MCILROY A, et al.. Enols are common intermediates in hydrocarbon oxidation. Science, 2005, 308 (5730): 1887- 1889.
20 YANG J. Photonionization cross section database (version 2.0) [EB/OL]. (2017-01-15)[2022-10-13]. http://flame.nsrl.ustc.edu.cn/database.
21 HARDY R A, KARAYILAN A M, METHA G F.. Using photoionization efficiency spectroscopy and density functional theory to investigate charge transfer interactions in AuCe3On clusters. The Journal of Physical Chemistry A, 2020, 124 (28): 5812- 5823.
22 DUSCHINSKY F.. The importance of the electron spectrum in multi atomic molecules. Concerning the Franck-Condon principle. Acta Physicochim URSS, 1937, (7): 551- 566.
23 FRISCH M J, TRUCKS G W, SCHLEGEL H B, et al. Gaussian 16 Rev. C. 01 [EB/OL]. (2019-10-14)[2022-10-13]. http://gaussian.com/relnotes.
24 GOZEM S, KRYLOV A I. The ezSpectra suite: An easy-to-use toolkit for spectroscopy modeling [J]. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2022, 12(2): e1546.
25 ZHAO L, LU W, AHMED M, et al.. Gas-phase synthesis of benzene via the propargyl radical self-reaction. Science Advances, 2021, 7 (21): eabf0360.
26 CANTA A, TEAGUE R, LE GAL R, et al.. The first detection of CH2CN in a protoplanetary disk. The Astrophysical Journal, 2021, 922 (1): 62.
文章导航

/