学习评价与推荐

基于序列感知与多元行为数据的MOOCs知识概念推荐

  • 任俊霖 ,
  • 王欢 ,
  • 黄骁迪 ,
  • 李艳婷 ,
  • 琚生根
展开
  • 四川大学 计算机学院, 成都 610065

收稿日期: 2024-07-06

  录用日期: 2024-07-06

  网络出版日期: 2024-09-23

基金资助

国家自然科学基金 (62137001)

Sequence-aware and multi-type behavioral data driven knowledge concept recommendation for massive open online courses

  • Junlin REN ,
  • Huan WANG ,
  • Xiaodi HUANG ,
  • Yanting LI ,
  • Shenggen JU
Expand
  • College of Computer Science, Sichuan University, Chengdu 610065, China

Received date: 2024-07-06

  Accepted date: 2024-07-06

  Online published: 2024-09-23

摘要

大规模在线开放课程 (massive open online courses, MOOCs) 中, 知识概念推荐旨在分析和提取平台上的学习记录, 进而为用户推荐个性化的知识概念, 避免主观盲目地挑选学习内容导致的低效性. 然而, 现有的知识概念推荐方法缺乏对用户行为数据的多维度利用, 例如序列信息和复杂类型交互. 鉴于此, 提出了一种基于序列感知与多元行为数据的MOOCs知识概念推荐方法, 提取知识概念的序列信息, 并与图卷积网络输出的特征通过注意力机制进行聚合, 参与用户下一个感兴趣知识概念的预测. 此外, 利用多元对比学习, 将用户兴趣偏好与不同的交互关系融合, 准确学习到复杂交互中的个性化特征. 在MOOCCube数据集上的实验结果表明, 所提出的方法在多项指标上优于现有的基线模型, 验证了其在知识概念推荐中的有效性和实用性.

本文引用格式

任俊霖 , 王欢 , 黄骁迪 , 李艳婷 , 琚生根 . 基于序列感知与多元行为数据的MOOCs知识概念推荐[J]. 华东师范大学学报(自然科学版), 2024 , 2024(5) : 45 -56 . DOI: 10.3969/j.issn.1000-5641.2024.05.005

Abstract

In massive open online courses (MOOCs), knowledge concept recommendation aims to analyze and extract learning records from a platform to recommend personalized knowledge concepts to users, thereby avoiding the inefficiencies caused by the blind selection of learning content. However, existing methods often lack comprehensive utilization of the multidimensional aspects of user behavior data, such as sequential information and complex interactions. To address this issue, we propose STRec, a sequence-aware and multi-type behavioral data driven knowledge concept recommendation method for MOOCs. STRec extracts the sequential information of knowledge concepts and combines it with the features produced by graph convolutional networks using an attention mechanism. This facilitates the prediction of a user's next knowledge concept of interest. Moreover, by employing multi-type contrastive learning, our method integrates user-interest preferences with various interaction relationships to accurately capture personalized features from complex interactions. The experimental results on the MOOCCube dataset demonstrate that the proposed method outperforms existing baseline models across multiple metrics, validating its effectiveness and practicality in knowledge concept recommendation.

参考文献

1 GONG J, WANG S, WANG J, et al. Attentional graph convolutional networks for knowledge concept recommendation in MOOCs in a heterogeneous view [C]// Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, 2020: 79-88.
2 VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need [EB/OL]. (2017-06-12)[2024-06-23]. https://arxiv.org/abs/1706.03762.
3 PIAO G Y. Recommending knowledge concepts on MOOC platforms with meta-path-based representation learning [C/OL]. International Educational Data Mining Society. (2021-06-21)[2024-05-27]. https://eric.ed.gov/?id=ED615611.
4 WANG X, MA W, GUO L, et al. HGNN: Hyperedge-based graph neural network for MOOC course recommendation [J]. Information Processing & Management, 2022, 59(3): 102938.
5 ZHANG H, SHEN X, YI B, et al. KGAN: Knowledge grouping aggregation network for course recommendation in MOOCs [J]. Expert Systems with Applications, 2023, 211: 118344.
6 HAO P, LI Y, BAI C. Meta-relationship for course recommendation in MOOCs [J]. Multimedia Systems, 2023, 29(1): 235-246.
7 GU H, DUAN Z, XIE P, et al. Modeling balanced explicit and implicit Relations with contrastive learning for knowledge concept recommendation in MOOCs [C]// Proceedings of the ACM on Web Conference 2024. ACM, 2024: 3712-3722.
8 ZHANG J, HAO B, CHEN B, et al. Hierarchical reinforcement learning for course recommendation in MOOCs [C]// Proceedings of the AAAI Conference on Artificial Intelligence. 2019, 33(1): 435-442.
8 ZHANG J, HAO B, CHEN B, et al. Hierarchical reinforcement learning for course recommendation in MOOCs [C]// Proceedings of the AAAI Conference on Artificial Intelligence. 2019, 33(1): 435-442.
9 GONG J, WANG C, ZHAO Z, et al. Automatic generation of meta-path graph for concept recommendation in MOOCs [J]. Electronics, 2021, 10(14): 1671.
10 LIANG Z, MU L, CHEN J, et al. Graph path fusion and reinforcement reasoning for recommendation in MOOCs [J]. Education and Information Technologies, 2023, 28(1): 525-545.
11 HIDASI B, KARATZOGLOU A, BALTRUNAS L, et al. Session-based recommendations with recurrent neural networks [EB/OL]. (2016-03-29)[2024-06-23]. http://arxiv.org/abs/1511.06939.
12 QUADRANA M, KARATZOGLOU A, HIDASI B, et al. Personalizing session-based recommendations with hierarchical recurrent neural networks [C]// Proceedings of the Eleventh ACM Conference on Recommender Systems. New York: ACM, 2017: 130-137.
13 WU C Y, AHMED A, BEUTEL A, et al. Recurrent recommender networks [C]// Proceedings of the Tenth ACM International Conference on Web Search and Data Mining. Cambridge: ACM, 2017: 495-503.
14 DUAN J, ZHANG P F, QIU R, et al. Long short-term enhanced memory for sequential recommendation [J]. World Wide Web, 2023, 26(2): 561-583.
15 KANG W C, MCAULEY J. Self-attentive sequential recommendation [C]// 2018 IEEE International Conference on Data Mining (ICDM). IEEE, 2018: 197-206.
16 LI J, WANG Y, MCAULEY J. Time interval aware self-attention for sequential recommendation [C]// Proceedings of the 13th International Conference on Web Search and Data Mining. ACM, 2020: 322-330.
17 SUN F, LIU J, WU J, et al. BERT4Rec: Sequential recommendation with bidirectional encoder representations from transformer [C]// Proceedings of the 28th ACM International Conference on Information and Knowledge Management. ACM, 2019: 1441-1450.
18 ZHOU K, WANG H, ZHAO W X, et al. S3-Rec: Self-supervised learning for sequential recommendation with mutual information maximization [C]// Proceedings of the 29th ACM International Conference on Information & Knowledge Management. New York: ACM, 2020: 1893-1902.
19 CHEN T, KORNBLITH S, NOROUZI M, et al. A simple framework for contrastive learning of visual representations [C]// Proceedings of the 37th International Conference on Machine Learning. PMLR, 2020: 1597-1607.
20 GAO T, YAO X, CHEN D. SimCSE: Simple contrastive learning of sentence embeddings [C]// MOENS M F, HUANG X, SPECIA L, et al. Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, 2021: 6894-6910.
21 LIU Z, CHEN Y, LI J, et al. Contrastive self-supervised sequential recommendation with robust augmentation [EB/OL]. (2021-08-14)[2024-05-28]. http://arxiv.org/abs/2108.06479.
22 DANG Y, YANG E, GUO G, et al. Uniform sequence better: Time interval aware data augmentation for sequential recommendation [J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2023, 37(4): 4225-4232.
23 XIE X, SUN F, LIU Z, et al. Contrastive learning for sequential recommendation [C]// 2022 IEEE 38th International Conference on Data Engineering (ICDE). IEEE, 2022: 1259-1273.
24 CHEN M, HUANG C, XIA L, et al. Heterogeneous graph contrastive learning for recommendation [C]// Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining. ACM, 2023: 544-552.
25 SHUAI J, ZHANG K, WU L, et al. A review-aware graph contrastive learning framework for recommendation [C]// Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, 2022: 1283-1293.
26 YU J, YIN H, XIA X, et al. Are graph augmentations necessary? Simple graph contrastive learning for recommendation [C]// Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, 2022: 1294-1303.
27 MIKOLOV T, CHEN K, CORRADO G, et al. Efficient estimation of word representations in vector space [EB/OL]. (2013-09-07)[2024-05-30]. http://arxiv.org/abs/1301.3781.
28 NAIR V, HINTON G E. Rectified linear units improve restricted boltzmann machines [C]// Proceedings of the 27th International Conference on Machine Learning. 2010: 807-814.
文章导航

/