收稿日期: 2024-08-19
录用日期: 2024-10-15
网络出版日期: 2024-11-29
基金资助
国家重点研发计划(2023YFE0121500)
Advancements in bio-tracking and bio-imaging technologies for microplastics
Received date: 2024-08-19
Accepted date: 2024-10-15
Online published: 2024-11-29
综述了微塑料生物示踪和成像技术的研究进展. 目前, 多种示踪技术已被应用于微塑料的生物分布研究中. 常用的标记方法包括荧光标记、金属标记、同位素标记等. 其中, 荧光示踪技术因其高灵敏度和易操作性而应用最为广泛. 基于微塑料本身的光谱特性, 研究者还开发了多种先进成像技术, 如高光谱成像、表面增强拉曼成像和偏振光成像等. 这些技术能够实现微塑料的高灵敏度检测和定量分析. 此外, 组织透明化技术与高分辨率成像的结合使得微塑料在生物体内的三维可视化成像成为可能. 这种方法能够更全面地揭示微塑料在生物体内的空间分布情况, 为深入研究微塑料的生物学效应提供了新的视角. 未来, 多种示踪技术和成像方法与三维处理分析软件的结合将有助于更精细地探究微塑料在生物个体及其器官内的原位分布. 这种综合分析方法有望为微塑料的环境风险评估和管理提供更全面的科学依据.
马翠竹 , 赵雯君 , 陈昱霏 , 施华宏 . 微塑料的生物示踪和生物成像技术研究进展[J]. 华东师范大学学报(自然科学版), 2024 , 2024(6) : 14 -23 . DOI: 10.3969/j.issn.1000-5641.2024.06.002
This article reviews the advancements in bio-tracking and imaging techniques for microplastics (MPs). Currently, fluorescent labeling, metal labeling, and isotope labeling are commonly employed, with fluorescent tracers being the most widely used method. Hyperspectral imaging, surface-enhanced Raman imaging, and polarized light imaging are also used due to the spectral characteristics of plastics. Combined with high-resolution imaging technology, tissue clearing made it possible to visualize three-dimensional (3D) imaging, providing a new perspective for in-depth research on the biological effects of MPs. Using various tracking technologies and imaging methods combined with 3D processing and analysis software will elucidate the distribution of microplastics in different organs and even individual organisms in the future. This comprehensive analysis method is expected to provide a stronger scientific foundation for the environmental risk assessment and management of MPs.
Key words: microplastics; tracking technique; imaging technology; biomarkers
1 | PANNETIER P, MORIN B, LE BIHANIC F, et al.. Environmental samples of microplastics induce significant toxic effects in fish larvae. Environment International, 2020, 134, 105047. |
2 | COLE M, LINDEQUE P, FILEMAN E, et al.. Microplastic ingestion by zooplankton. Environmental Science & Technology, 2013, 47 (12): 6646- 6655. |
3 | KARAKOLIS E G, NGUYEN B, YOU J B, et al.. Fluorescent dyes for visualizing microplastic particles and fibers in laboratory-based studies. Environmental Science & Technology Letters, 2019, 6 (6): 334- 340. |
4 | KUNIS S, BERNHARDT K, HENSEL M.. Setting up a data management infrastructure for bioimaging. Biological Chemistry, 2023, 404 (5): 433- 439. |
5 | 欧毅超, 冯展鹏, 武广森, 等.. 6种光学透明化方法在大鼠脑组织块的透明效果比较. 中国比较医学杂志, 2018, 28 (4): 7- 14. |
6 | 马翠竹. 微塑料的生物示踪技术、体内外分布特征及其与生物的相互作用 [D]. 上海: 华东师范大学, 2024. |
7 | FENG X, YANG X, LI M, et al.. Production and method optimization of fluorescent polystyrene. Journal of Molecular Structure, 2021, 1243, 130746. |
8 | 汪雨, 刘丹丹, 张洁洁, 等.. 羧基聚苯乙烯荧光微球的制备及其溶胀机制. 功能材料, 2017, 48 (6): 6193- 6198. |
9 | VAN POMEREN M, BRUN N R, PEIJNENBURG W J G M, et al.. Exploring uptake and biodistribution of polystyrene (nano)particles in zebrafish embryos at different developmental stages. Aquatic Toxicology, 2017, 190, 40- 45. |
10 | PITT J A, KOZAL J S, JAYASUNDARA N, et al. Uptake, tissue distribution, and toxicity of polystyrene nanoparticles in developing zebrafish (Danio rerio) [J]. Aquatic Toxicology, 2018, 194: 185-194. |
11 | CATARINO A I, FRUTOS A, HENRY T B.. Use of fluorescent-labelled nanoplastics (NPs) to demonstrate NP absorption is inconclusive without adequate controls. Science of the Total Environment, 2019, 670, 915- 920. |
12 | VENEMAN W J, SPAINK H P, BRUN N R, et al.. Pathway analysis of systemic transcriptome responses to injected polystyrene particles in zebrafish larvae. Aquatic Toxicology, 2017, 190, 112- 120. |
13 | LEE J J, KANG J, KIM C.. A low-cost TICT-based staining agent for identification of microplastics: Theoretical studies and simple, cost-effective smartphone-based fluorescence microscope application. Journal of Hazardous Materials, 2024, 465, 133168. |
14 | 白濛雨, 赵世烨, 彭谷雨, 等.. 城市污水处理过程中微塑料赋存特征. 中国环境科学, 2018, 38 (5): 1734- 1743. |
15 | RIBEIRO F, DUARTE A C, DA COSTA J P.. Staining methodologies for microplastics screening. TrAC Trends in Analytical Chemistry, 2024, 172, 117555. |
16 | 孙元, 邓新华, 边栋材.. PVA荧光纤维的制备及戊二醛缩醛化. 高分子材料科学与工程, 2008, 24 (4): 128- 131. |
17 | MA C, LI L, CHEN Q, et al.. Application of internal persistent fluorescent fibers in tracking microplastics in vivo processes in aquatic organisms. Journal of Hazardous Materials, 2021, 401, 123336. |
18 | SCHüR C, RIST S, BAUN A, et al.. When fluorescence is not a particle: The tissue translocation of microplastics in Daphnia magna seems an artifact. Environmental Toxicology and Chemistry, 2019, 38 (7): 1495- 1503. |
19 | PIKUDA O, XU E G, BERK D, et al.. Toxicity assessments of micro- and nanoplastics can be confounded by preservatives in commercial formulations. Environmental Science & Technology Letters, 2019, 6 (1): 21- 25. |
20 | GAGNé F.. Detection of polystyrene nanoplastics in biological tissues with a fluorescent molecular rotor probe. Journal of Xenobiotics, 2019, 9 (1): 8147. |
21 | CAPONETTI V, MAVRIDI-PRINTEZI A, CINGOLANI M, et al.. A selective ratiometric fluorescent probe for no-wash detection of PVC microplastic. Polymers, 2021, 13 (10): 1588. |
22 | MITRANO D M, BELTZUNG A, FREHLAND S, et al.. Synthesis of metal-doped nanoplastics and their utility to investigate fate and behaviour in complex environmental systems. Nature Nanotechnology, 2019, 14 (4): 362- 368. |
23 | TOPHINKE A H, JOSHI A, BAIER U, et al.. Systematic development of extraction methods for quantitative microplastics analysis in soils using metal-doped plastics. Environmental Pollution, 2022, 311, 119933. |
24 | REDONDO-HASSELERHARM P E, VINK G, MITRANO D M, et al.. Metal-doping of nanoplastics enables accurate assessment of uptake and effects on Gammarus pulex. Environmental Science: Nano, 2021, 8 (6): 1761- 1770. |
25 | DEL REAL A E P, MITRANO D M, CASTILLO-MICHEL H, et al.. Assessing implications of nanoplastics exposure to plants with advanced nanometrology techniques. Journal of Hazardous materials, 2022, 430, 128356. |
26 | CLARK N J, KHAN F R, MITRANO D M, et al.. Demonstrating the translocation of nanoplastics across the fish intestine using palladium-doped polystyrene in a salmon gut-sac. Environment International, 2022, 159, 106994. |
27 | SCHMIEDGRUBER M, HUFENUS R, MITRANO D M.. Mechanistic understanding of microplastic fiber fate and sampling strategies: Synthesis and utility of metal doped polyester fibers. Water Research, 2019, 155, 423- 430. |
28 | WANG Y, BAI J, WEI Y, et al.. Tracking and imaging nano-plastics in fresh plant using cryogenic laser ablation inductively coupled plasma mass spectrometry. Journal of Hazardous Materials, 2024, 465, 133029. |
29 | ZHANG J L, CHEN B W, LUO X, et al.. Eu(Ⅲ) complex-doped PMMA having fast radiation rate and high emission quantum efficiency. Chinese Chemical Letters, 2012, 23 (8): 945- 948. |
30 | ZHANG P, WANG Y, ZHAO X, et al.. Surface-enhanced Raman scattering labeled nanoplastic models for reliable bio-nano interaction investigations. Journal of Hazardous Materials, 2022, 425, 127959. |
31 | SANDER M, KOHLER H-P E, MCNEILL K.. Assessing the environmental transformation of nanoplastic through 13C-labelled polymers. Nature Nanotechnology, 2019, 14 (4): 301- 303. |
32 | AL-SID-CHEIKH M, ROWLAND S J, KAEGI R, et al.. Synthesis of 14C-labelled polystyrene nanoplastics for environmental studies. Communications Materials, 2020, 1 (1): 97. |
33 | FRYDKJ?R C K, IVERSEN N, ROSLEV P.. Ingestion and egestion of microplastics by the Cladoceran Daphnia magna: Effects of regular and irregular shaped plastic and sorbed Phenanthrene. Bulletin of Environmental Contamination and Toxicology, 2017, 99 (6): 655- 661. |
34 | AL-SID-CHEIKH M, ROWLAND S J, STEVENSON K, et al.. Uptake, whole-body distribution, and depuration of nanoplastics by the scallop Pecten maximus at environmentally realistic concentrations. Environmental Science & Technology, 2018, 52 (24): 14480- 14486. |
35 | WILSKE B, BAI M, LINDENSTRUTH B, et al.. Biodegradability of a polyacrylate superabsorbent in agricultural soil. Environmental Science and Pollution Research, 2014, 21 (16): 9453- 9460. |
36 | ZUMSTEIN M T, SCHINTLMEISTER A, NELSON T F, et al.. Biodegradation of synthetic polymers in soils: Tracking carbon into CO2 and microbial biomass. Science Advances, 2018, 4 (7): eaas9024. |
37 | TIAN L, CHEN Q, JIANG W, et al.. A carbon-14 radiotracer-based study on the phototransformation of polystyrene nanoplastics in water versus in air. Environmental Science: Nano, 2019, 6 (9): 2907- 2917. |
38 | HUANG W E, GRIFFITHS R I, THOMPSON I P, et al.. Raman microscopic analysis of single microbial cells. Analytical Chemistry, 2004, 76 (15): 4452- 4458. |
39 | RADAJEWSKI S, INESON P, PAREKH N R, et al.. Stable-isotope probing as a tool in microbial ecology. Nature, 2000, 403 (6770): 646- 649. |
40 | ZHANG Y, WANG X, SHAN J, et al.. Hyperspectral imaging based method for rapid detection of microplastics in the intestinal tracts of fish. Environmental Science & Technology, 2019, 53 (9): 5151- 5158. |
41 | ZHAO J, LAN R, WANG Z, et al.. Microplastic fragmentation by rotifers in aquatic ecosystems contributes to global nanoplastic pollution. Nature Nanotechnology, 2023, 19, 406- 414. |
42 | MORTIMER M, GOGOS A, BARTOLOMé N, et al.. Potential of hyperspectral imaging microscopy for semi-quantitative analysis of nanoparticle uptake by protozoa. Environmental Science & Technology, 2014, 48 (15): 8760- 8767. |
43 | DAS A, TERRY L R, SANDERS S, et al.. Confocal surface-enhanced Raman imaging of the intestinal barrier crossing behavior of model nanoplastics in Daphnia Magna. Environmental Science & Technology, 2024, 58 (26): 11615- 11624. |
44 | XU G, CHENG H, JONES R, et al.. Surface-enhanced raman spectroscopy facilitates the detection of microplastics < 1 μm in the environment. Environmental Science & Technology, 2020, 54 (24): 15594- 15603. |
45 | 何宏辉, 曾楠, 廖然, 等.. 偏振光成像技术用于肿瘤病变检测的研究进展. 生物化学与生物物理进展, 2015, 42 (5): 15. |
46 | VON MOOS N, BURKHARDT-HOLM P, KOEHLER A.. Uptake and effects of microplastics on cells and tissue of the blue mussel Mytilus edulis L. after an experimental exposure. Environmental Science & Technology, 2012, 46 (20): 11327- 11335. |
47 | 华正罡, 李良, 那军, 等.. 污泥堆放场地附近饲养生猪肠组织微塑料污染状况调查. 中国公共卫生, 2021, 37 (3): 6. |
48 | DELLA TORRE C, BERGAMI E, SALVATI A, et al.. Accumulation and embryotoxicity of polystyrene nanoparticles at early stage of development of sea urchin embryos Paracentrotus lividus. Environmental Science & Technology, 2014, 48 (20): 12302- 12311. |
49 | M?LLER J N, L?DER M G J, LAFORSCH C.. Finding microplastics in soils: A review of analytical methods. Environmental Science & Technology, 2020, 54 (4): 2078- 2090. |
50 | ROCH S, BRINKER A.. Rapid and efficient method for the detection of microplastic in the gastrointestinal tract of fishes. Environmental Science & Technology, 2017, 51 (8): 4522- 4530. |
51 | HERMSEN E, MINTENIG S M, BESSELING E, et al.. Quality criteria for the analysis of microplastic in biota samples: A critical review. Environmental Science & Technology, 2018, 52 (18): 10230- 10240. |
52 | 邹亚丹, 徐擎擎, 张哿, 等.. 6种消解方法对荧光测定生物体内聚苯乙烯微塑料的影响. 环境科学, 2019, 40 (1): 496- 503. |
53 | 李敏, 王妃平, 陈子奇, 等.. 生物样品中微塑料的提取、定性与定量方法研究进展. 环境科学, 2024, |
54 | WAGNER J, WANG Z M, GHOSAL S, et al.. Nondestructive extraction and identification of microplastics from freshwater sport fish stomachs. Environmental Science & Technology, 2019, 53 (24): 14496- 14506. |
55 | ZHANG X, LIU R, YUAN Q, et al.. The precise diagnosis of cancer invasion/metastasis via 2D laser ablation mass mapping of metalloproteinase in primary cancer tissue. ACS Nano, 2018, 12 (11): 11139- 11151. |
56 | RICHARDSON D S, GUAN W, MATSUMOTO K, et al.. Tissue clearing. Nature Reviews Methods Primers, 2021, 1 (1): 84. |
57 | HAMA H, KUROKAWA H, KAWANO H, et al.. Scale: A chemical approach for fluorescence imaging and reconstruction of transparent mouse brain. Nature Neuroscience, 2011, 14 (11): 1481- 1488. |
58 | CAIRóS C, OLIVA-GARCíA R, SIVERIO G, et al.. Refractive index estimation in biological tissues by quantitative phase imaging. Optical Materials, 2023, 142, 114087. |
59 | RITSCHAR S, HüFTLEIN F, SCHELL L-M, et al.. Taking advantage of transparency: A proof-of-principle for the analysis of the uptake of labeled microplastic particles by organisms of different functional feeding guilds using an adapted CUBIC protocol. Science of the Total Environment, 2022, 832, 154922. |
60 | MACAIRAN J-R, NGUYEN B, LI F, et al.. Tissue clearing to localize microplastics via three-dimensional imaging of whole organisms. Environmental Science & Technology, 2023, 57 (23): 8476- 8483. |
/
〈 |
|
〉 |