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0 Introduction

Recall that all finite-dimensional simple Lie algebras over an algebraically closed field of

characteristic zero arise from simple algebraic groups. While in the case of prime characteristic,

there are finite-dimensional simple Lie algebras of so-called Cartan type besides classical Lie

algebras arising from simple algebraic groups. These simple Lie algebras of Cartan type fall

into four classes: types W , S, H and K (cf. [1]). One can also define the Cartan type Lie

algebras over a finite field. More works on representations of Cartan type Lie algebras are over

algebraically closed fields (cf. [2-23]). It seems to be necessary to consider representations of

Cartan type Lie algebras over a finite field. Jie Du and Bin Shu[24] developed an approach to
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investigate representations of a finite Lie algebra LF over a finite field Fq through representations

of a Lie algebra L with a Frobenius morphism F over the algebraic closure k = F̄q. Initiated

by their work, we give a sufficient and necessary condition for irreducible generalized χ-reduced

modules of Cartan type Lie algebras over k = F̄q being split over Fq, where the height of the

character χ is no more than 0. For the Witt algebra, we can give some further results for more

general χ.

Throughout this paper, we define q as a given power of a prime p > 2, Fq the finite field

of q elements and k the algebraic closure F̄q of Fq. All the vector spaces and modules are of

finite dimensional.

1 Preliminaries

1.1 Lie algebras of Cartan type

Fix a positive integer m and an m-tuple n = (n1, · · · , nm) of positive integers. Denote

by A(m;n) the index set {α = (α1, · · · , αm) | 0 6 αi 6 pni−1, i = 1, 2, · · · , m}. We have the

divided power algebra A(m;n) with a basis {xα | α ∈ A(m;n)}.
Let Di (1 6 i 6 m) be the linear partial derivation of A(m;n) with respect to the i-th

invariant xi such that Di(x
α) = xα−εi , ∀α ∈ A(m;n). In the following, we will recall the four

classes of Cartan type Lie algebras, drawing most of the notations and results from [25].

(1) The generalized Jacobson-Witt algebra W (m;n) is by definition a collection of all

special derivations of the divided power algebra A(m;n). By [25, Proposition 2.2, Chapter 4],

W (m;n) = k-span{xαDi | α ∈ A(m;n), 1 6 i 6 m}. In the following, the standard basis

of W (m;n) is always referred to {xαDi | α ∈ A(m;n), 1 6 i 6 m} denoted by {EW
i | i =

1, 2, · · · , tW } such that EW
i = Di for 1 6 i 6 m, where tW = dim W (m;n) = mp

P

ni .

It is worth mentioning that W (m;n)0 = F -span{xαDj | |α| > 1, j = 1, 2, · · · , m} admits

a structure of a restricted Lie algebra with [p ]-mapping defined just as the p-th power as

usual derivations, and the zero-graded component W (m;n)[0] ∼= gl(m). Moreover, hW := k-

span{hW
i := xiDi | i = 1, 2, · · ·m} is a canonical torus of W (m;n)[0].

(2) Here in this case we assume m > 3. Define the divergence map div from the gener-

alized Jacobson-Witt algebra W (m;n) to the divided power algebra A(m;n) as follows

div : W (m;n) −→ A(m;n),

m∑

i=1

fiDi 7−→
m∑

i=1

Di(fi).

Set ˜S(m;n) = {D ∈ W (m;n) | div D = 0}. Then by definition, the derived algebra of
˜S(m;n) is called the special algebra S(m;n). By [25, Proposition 3.3, Chapter 4], S(m;n) = k-

span{Dij(x
α) | α ∈ A(m;n), 1 6 i < j 6 m}, where Dij is a linear map from A(m;n) to

W (m;n) defined as follows

Dij : A(m;n) −→ W (m;n)

xα 7−→ Dij(x
α) = xα−εj Di − xα−εiDj.
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A standard basis of S(m;n) is taken from {Dij(x
α) | α ∈ A(m;n), 1 6 i < j 6 m} denoted

by {ES
i | i = 1, 2, · · · , tS} such that ES

i = Di for 1 6 i 6 m, where tS = dim S(m;n) =

(m − 1)(p
P

ni − 1). It is obvious that S(m;n) is a graded subalgebra of W (m;n).

It is worth mentioning that S(m;n)0 = F -span{Dij(x
α) | |α| > 2, 1 6 i < j 6 m}

admits a structure of a restricted Lie algebra with [p ]-mapping defined just as the p-th power

as usual derivations, and the zero-graded component S(m;n)[0] ∼= sl(m). Moreover, hS := k-

span{hS
i := xiDi − xi+1Di+1 | i = 1, 2, · · ·m − 1} is a canonical torus of S(m;n)[0].

(3) Here in this case we assume m = 2r is even. Define the Hamiltonian operator DH

from A(2r;n) to W (2r;n) as follows

DH : A(2r;n) −→ W (2r;n),

f 7−→ DH(f) =

2r∑

i=1

σ(i)Di(f)Di′ ,

where σ(i) :=

{
1, if 1 6 i 6 r,

−1, if r + 1 6 i 6 2r,
and i′ :=

{
i + r, if 1 6 i 6 r,

i − r, if r + 1 6 i 6 2r.

Then by definition H(2r;n) = k-span{DH(xα) | 0 ≺ α ≺ τ} is the Hamiltonian algebra.

The standard basis is always referred to {DH(xα) | α ∈ A(2r;n)} denoted by {EH
i | i =

1, 2, · · · , tH} such that EH
i = Di for 1 6 i 6 2r, where tH = dim H(m;n) = p

P

ni − 2. It is

obvious that H(2r;n) is a graded subalgebra of W (2r;n).

It’s specially worth mentioning that H(2r;n)0 = k-span{DH(xα) | |α| > 2} admits

a structure of a restricted Lie algebra with [p ]-mapping defined just as the p-th power as

usual derivations, and the zero-graded component H(2r;n)[0] ∼= sp(2r). Moreover, hH := k-

span{hH
i := xiDi − xi+rDi+r | i = 1, 2, · · · r} is a canonical torus of H(2r;n)[0].

(4) Here in this case we assume that m = 2r +1 is odd. Define the contact operator DK

from A(2r + 1;n) to W (2r + 1;n) as follows

DK : A(2r + 1;n) −→ W (2r + 1;n),

f 7−→ DK(f) =
2r+1∑

i=1

fiDi.

where

fj = xjD2r+1(f) + σ(j′)Dj′(f), j 6 2r,

f2r+1 = 2f −
2r∑

i=1

σ(j)xjfj′ .

Set ˜K(2r + 1;n) = k-span{DK(xα) | α ∈ A(m;n)}. The contact algebra K(2r + 1;n) is

the derived algebra of ˜K(2r + 1;n). The standard basis is always referred to {DK(xα) | 0 �
α � τ} when 2r + 4 6≡ 0 (mod p) or {DK(xα) | 0 � α ≺ τ} when 2r + 4 ≡ 0 (mod p) denoted by

{EK
i | i = 1, 2, · · · , tK} such that EK

i = DK(xi) for 1 6 i 6 2r, EK
2r+1 = DK(1), and

tK = dim K(m;n) =

{
p

P

ni , if 2r + 4 6≡ 0 (mod p),

p
P

ni − 1, if 2r + 4 ≡ 0 (mod p).
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It is obvious that K(2r + 1;n) is a subalgebra of W (2r + 1;n), but it is not a graded

subalgebra. One can, however, define a new gradation on K(2r + 1;n) which doesn’t inherit

from the gradation of W (2r+1;n). For that, define ||α|| =
2r∑

i=1

αi+α2r+1−2 for α ∈ A(2r+1;n)

and K(2r + 1;n)[i] = k-span{DK(xα) | ||α|| = i}. Then K(2r + 1;n) =
⊕

i>−2

K(2r + 1;n)[i] is

a gradation of K(2r + 1;n). Associated with this gradation, one can obtain the corresponding

filtration.

Notice that K(2r+1;n)0 = F -span{DK(xα) | ||α|| > 0} admits a structure of a restricted

Lie algebra with [p ]-mapping defined just as the p-th power as usual derivations, and the zero-

graded component K(2r + 1;n)[0] ∼= sp(2r)
⊕

kI. Moreover, hK := k-span{hK
i := xiDi −

xi+rDi+r, h
K
r+1 = DK(1) | i = 1, 2, · · · r} is a canonical torus of K(2r + 1;n)[0].

Remark 1.1 The structure constants of the four classes of Cartan type Lie algebras

with respect to the standard basis chosen above are integers. This property is important to our

discussion below.

1.2 Generalized restricted Lie algebras and their generalized reduced representa-

tions

As is well known that not all of the graded Lie algebras of Cartan type are restricted Lie

algebras, but there are generalized restricted Lie algebras in the following sense, among which

restricted Lie algebras are.

Definition 1.1[9] A generalized restricted Lie algebra L is a Lie algebra associated with

an ordered basis E = (ei) i∈I and a so-called generalized restricted map ϕs : E → L sending

ei 7−→ eϕs

i with s = (si) i∈I , si ∈ Z+ such that ad eϕs

i = (ad ei)
psi

for all i ∈ I.

Let us demonstrate how the four graded Cartan type Lie algebras X(m;n), X ∈
{W, S, H, K}, are endowed with a generalized restricted structure.

Example 1.1 In L = X(m;n), X ∈ {W, S, H, K}, there is a standard basis {ei :=

EX
i | i = 1, 2, · · · tX} of L (see §1.1). Then, associated with this basis and s :=

(n1, n2, · · · , nm, 1, 1, · · · , 1), L is a generalized restricted Lie algebra with a generalized re-

stricted mapping ϕs such that eϕs

i = 0 for i = 1, · · · , m and eϕs

j = e
[p]
j for j > m, because L0

is a restricted Lie algebra with [p]-mapping defined just as the p-th power as usual derivations,

as well as ad(ei)
pni

= 0 for i = 1, · · · , m.

We have the following basic fact by Schur lemma.

Lemma 1.1 Let F be an algebraically closed field of characteristic p > 0. Let (L, ϕs) be a

generalized restricted Lie algebra over F associated with a basis E = (ei) i∈I and ϕs , s = (si) i∈I .

If (V, ρ) is an irreducible representation of L, then there exists a unique χ ∈ L∗ such that

ρ(ei)
psi − ρ(eϕs

i ) = χ(ei)
psi

idV , ∀x ∈ L. (1.1)

Here the function χ is also called a (generalized) character of V . A representation (module)

of L satisfying (1.1) is called a generalized χ-reduced representation (module), all of which

constitute a full subcategory of the Lie algebra representation category.

Let’s continue to recall some facts. Assume L is a generalized restricted Lie algebra. For
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χ ∈ L∗, we define Ups(L, χ) := U(L)/〈epsi

i − eϕs

i −χ(ei)
psi 〉 where 〈epsi

i − eϕs

i −χ(ei)
psi 〉 means

the ideal in U(L) generated by those central elements epsi

i − eϕs

i − χ(ei)
psi

for all ei ∈ E. Call

Ups(L, χ) the generalized χ-reduced enveloping algebra of L. A generalized χ-reduced module

category of L coincides with the unitary Ups(L, χ)-module category. Especially, in the case

when χ = 0, we have the generalized restricted enveloping algebra Ups(L) := Ups(L, 0) (cf. [9,

10]).

Remark 1.2 (1) We know that a restricted Lie algebra (g, [p]) can be a generalized

restricted Lie algebra associated with an arbitrary given basis E and s = 1. Furthermore,

it’s easily seen that in this sense, a generalized χ-reduced module category and a generalized

χ-reduced enveloping algebra coincide with the ones arising from a restricted Lie algebra.

(2) The invariance of filtration for L = X(m;n) under Aut(L), X ∈ {W, S, H, K}, enables

us to define the height of a nonzero χ ∈ L∗ via ht(χ) := max{i | χ(Li−1) 6= 0}, and ht(0) :=

−1 − δXK . Then the height function on L∗ is invariant under the action of Aut(L) defined by

σ · χ = χ ◦ σ−1 for σ ∈ Aut(L) and χ ∈ L∗.

1.3 Frobenius morphism and module Frobenius morphism

Let V be a k-vector space. A map f : V −→ V is called a (q−)semilinear map if f(v1 +

v2) = f(v1)+f(v2) and f(av1) = aqf(v1), ∀ v1, v2 ∈ V and a ∈ k. A (q−)semilinear map which

is invertible is called a (q−)semilinear isomorphism. If F is a (q−)semilinear isomorphism and

in addition, for any v ∈ V , there always exists n ∈ N such that Fn(v) = v, then F is called a

(q−)Frobenius map on V .

A Frobenius map F on V gives rise to an Fq-subspace V0 of V , where V0 is the fixed points

of F on V , i.e. V0 = V F := {v ∈ V | F (v) = v}. Moreover V0 is an Fq-structure of V , i.e.

V0

⊗
Fq

k ∼= V .

Remark 1.3 In our assumption that V is of finite dimensional, any (q−)semilinear

isomorphism is a Frobenius map (see [26, 2.2]).

Let L be a Lie algebra over k. A Frobenius map F on L is called a Frobenius morphism if

F keeps the Lie bracket structure of L, i.e. F [x, y] = [F (x), F (y)], ∀x, y ∈ L. Assume M is an

L-module with a Frobenius map FM , if additionally FM (xm) = F (x)FM (m), ∀x ∈ L, m ∈ M ,

then FM is called a module Frobenius morphism, and M is called an F -stable L-module with

module Frobenius morphism FM .

Remark 1.4 (1) Let L = X(m;n), X ∈ {W, S, H, K}, there is a standard basis

{EX
i | i = 1, 2, · · · tX} for L (see §1.1). We can define a Frobenius morphism F0 : L −→

L,
∑tX

i=1 aiE
X
i 7−→ ∑tX

i=1 aq
i E

X
i . Then one can easily check that LF0 = Fq-span{EX

i | i =

1, 2, · · · tX} denoted by LFq
, and LFq

is the corresponding Cartan type Lie algebra over a finite

field Fq. The Frobenius morphism F0 is called the standard Frobenius morphism on L.

(2) Let L = X(m;n), X ∈ {W, S, H, K} and let F be an arbitrary Frobenius morphism

on L, then one can easily see that FF−1
0 is an automorphism of L. So there exists σ ∈ Aut(L)

such that F = σF0. Then {σF0 | σ ∈ Aut(L)} is the set of all Frobenius morphisms on L.

(3) Any Frobenius morphism F on a Lie algebra L can be extended to be defined on the

universal enveloping algebra U(L) of L, because F keeps the Lie bracket structure of L.



108 uÀ���ÆÆ�(g,�Æ�) 2011 c

Denote by L-mod finite dimensional L-module category, LF -mod finite dimensional

LF -module category. Denote by L-mod
F the category with objects consisting of finite di-

mensional F -stable modules (V, f), where V is an F -stable L-module and f is a module

Frobenius morphism, and the set of morphisms between two objects (V, f) and (W, g) is

Hom((V, f), (W, g)) = {ϕ ∈ HomL(V, W ) | ϕf = gϕ}.
The following result is important to the discussion below, which asserts that LF -mod can

be imbedded into a subcategory of L-mod.

Theorem 1.1[24] The category L-mod
F is equivalent to the category LF -mod. In

particular, there is a one-to-one correspondence between isoclasses of simple LF -modules and

that of simple F -stable L-modules.

1.4 Frobenius twist of L-modules

For each k-space V , let V (1) be a new k-vector space obtained from V by a twist of scalar

multiplication, i.e. V (1) = V as an abelian group together with a new scalar multiplication:

a � v = q
√

av for any a ∈ k, v ∈ V . More precisely, if V has a basis {vi | i = 1, 2, · · · t}, then

V (1) as a k-vector space has a basis {v(1)
i | i = 1, 2, · · · , t} such that (u+ v)(1) = u(1) + v(1) and

(av)(1) = aqv(1), ∀u, v ∈ V, a ∈ k. So the canonical map τV : V −→ V (1) sending any v ∈ V

to v(1) ∈ V (1) is a q-semilinear isomorphism. A k-linear map ϕ : V −→ W naturally induces a

k-linear map ϕ(1) : V (1) −→ W (1) such that ϕ(1)(v(1)) = (ϕ(v))(1), ∀ v ∈ V .

Definition 1.2 Let L be a Lie algebra over k with a Frobenius morphism F and Let V

be an L-module defined by the Lie algebra homomorphism ρ : L −→ gl(V ). This gives rise to

a Lie algebra homomorphism ρ(1) : L(1) −→ gl(V )(1) ∼= gl(V (1)). Thus the composition ρ[1] of

the following maps

L
F−1

−→ L
τL−→ L(1) ρ(1)

−→ gl(V (1))

defines an L-module structure on V (1) with the following new action

x · (v(1)) = (F−1(x)v)(1), ∀x ∈ L, v ∈ V.

We denote this module by V [1] and call it the Frobenius twist of V .

The following lemma will be used in the next two sections.

Lemma 1.2 Let L = X(m;n), X ∈ {W, S, H, K} be a graded Lie algebra of Cartan type

with the standard Frobenius morphism F0 and let V be a (generalized) χ-reduced L-module

with a Frobenius map FV , then

(1) V is F0-stable if and only if V ∼= V [1].

(2) V [1] is a (generalized) χ[1]-reduced L-module, where χ[1] ∈ L∗ is the twist of χ such that

χ[1](x) = (χ(F−1(x)))q , ∀x ∈ L.

By Lemma 1.2, we have the following direct consequence.

Corollary 1.1 Let L = X(m;n), X ∈ {W, S, H, K} be a graded Lie algebra of Cartan

type with the standard Frobenius morphism F0 and let V be a (generalized) χ-reduced L-

module. If V is F0-stable, then χ = χ[1], where χ[1] is defined as in Lemma 1.2.
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2 Fq-forms of Cartan type Lie algebras

In this section, we always assume L = X(m;n), X ∈ {W, S, H, K}. Let k′ be a subfield

of k. A Lie k′-subalgebra L̃ of L is called a k′-form of L if the natural homomorphism from

L̃
⊗

k′ k to L is an isomorphism of Lie algebras. From Remark 1.4, we can see that LFq
is an

Fq-form of L. Moreover, any Frobenius morphism F on L determines an Fq-form LF of L.

On the other hand, given an Fq-form L̃, there exists a unique Frobenius morphism F ′ such

that L̃ = LF ′

. Two Frobenius morphisms F1, F2 are called equivalent denoted as F1 ∼ F2, if

LF1 ∼= LF2 as Lie Fq-algebras. So, to determine Fq-forms of L is equivalent to determine the

equivalent classes of Frobenius morphisms on L.

The following proposition gives a sufficient condition for two Frobenius morphisms on L

being equivalent.

Proposition 2.1 Let F1 = σ1F0, F2 = σ2F0 be two Frobenius morphisms on L with

σ1, σ2 ∈ Aut(L). If there exists σ ∈ Aut(L) keeping LFq
stable such that σ1 = σ−1σ2σ, then

F1 ∼ F2.

Proof Since σ keeps LFq
stable, then σ ∈ Aut(LFq

). Therefore σF0σ
−1 = F0 by a direct

computation. Hence

F1 = σ1F0 = σ−1σ2σF0σ
−1σ = σ−1σ2F0σ = σ−1F2σ.

Therefore, by [24, Lemma 2.6], F1 ∼ F2.

Remark 2.1 The condition given in Proposition 2.1 is not a necessary condition for two

Frobenius morphisms being equivalent. If it was a necessary condition, take any θ ∈ Aut(L),

then θ−1F0θ ∼ F0 by [24, Lemma 2.6]. Set ϑ = θ−1F0θF
−1
0 ∈ Aut(L), then θ−1F0θ = ϑF0, i.e.

ϑF0 ∼ F0. So ϑ = id by the assumption above. We then obtain that θF0 = F0θ which does not

hold for all θ ∈ Aut(L).

We can give the following necessary condition for two Frobenius morphisms being equiv-

alent. Its proof is straightforward.

Proposition 2.2 Let F1 = σ1F0, F2 = σ2F0 be two Frobenius morphisms on L with

σ1, σ2 ∈ Aut(L). If F1 ∼ F2, then there exists some i > 0 such that σ1, σ2 ∈ Gi, where

Gi = {σ ∈ Aut(L) | σ(Lj) ⊆ (L[j] + Lj+i) \ (L[j] + Lj+i+1), ∀ j}.

3 Representations of Cartan type Lie algebras over a fi-
nite field

In this section, we always assume L = X(m;n), X ∈ {W, S, H, K}. We will adopt the

theory developed in [24] to study irreducible representations of L over a finite field Fq. For

that we first recall some known results about irreducible representations of L over the algebraic

closure k = F̄q of Fq (see [2-23]).

Theorem 3.1 Let L = X(m;n), X ∈ {W, S, H, K}. Every irreducible L-module M

over k corresponds to a unique character χ ∈ L∗. Assume ht(χ) 6 0, then

(1) Non-exceptional case. i.e. there doesn’t exist an irreducible L0-submodule of M with an

exceptional weight ωi as its “highest” weight.
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In this case, M ∼= Ups(L, χ)
⊗

Up(L0)
L0(λ) for some λ ∈ (hX)∗ such that λ(hX

i ) ∈ Fp

for all i = 1, 2, · · · , dim hX . Here L0(λ) is the irreducible restricted L[0]-module with

“highest” weight λ which can be viewed as an irreducible L0-module with trivial action

by L1.

(2) Exceptional case. i.e. there exists an irreducible L0-submodule of M with an exceptional

weight ωi as its “highest” weight.

In this case, M ∼=
(
Ups(L, χ)

⊗
Up(L0)

L0(ωi)
)
/M̃ , where L0(ωi) is the irreducible re-

stricted L[0]-module with the exceptional “highest” weight ωi which can be viewed as an

irreducible L0-module with trivial action by L1. And M̃ is the unique maximal submodule

of Ups(L, χ)
⊗

Up(L0)
L0(ωi).

Remark 3.1 The exceptional weights “ωi” appearing above for the four classes of Car-

tan type Lie algebras are actually the fundamental weights for the corresponding classical Lie

algebras gl(m), sl(m), sp(2r), sp(2r)
⊕

KI. Readers are referred to [5,6,14−16].

Before presenting the main result of this section, we need the following definition.

Definition 3.1 Assume g is a Lie algebra over k with a Frobenius morphism F and M

is a g-module. If there exists a gF -submodule M1 of M such that M1

⊗
Fq

k ∼= M as g-modules,

then M is called to be split over Fq.

Remark 3.2 If a g-module M is split over Fq in the sense of Definition 3.1, then it is

obvious that there exists a module Frobenius morphism FM on M fixing M1. So M is F -stable.

On the other hand, if M is F -stable with module Frobenius morphism FM , take M1 = MFM ,

then M1 is a gF -submodule of M and M1

⊗
Fq

k ∼= M , so M is split over Fq.

By Theorem 1.1, Corollary 1.1 and Theorem 3.1, we have the following result describing

the connection of irreducible representations of L over a finite field Fq and its algebraic closure

k = Fq.

Theorem 3.2 Let L = X(m;n), X ∈ {W, S, H, K}, be a graded Lie algebra of Cartan

type over k with standard Frobenius morphism F0 defined as in Remark 1.4. Let χ ∈ L∗ with

ht(χ) 6 0. Then an irreducible L-module M with character χ is split over Fq if and only if

χ(EX
i ) ∈ Fq for all i = 1, 2, · · · , tX = dimL.

Proof (1) “ ⇒ ”: If M is split over Fq, by Remark 3.2, M is F0-stable. So χ = χ[1] by

Corollary 1.1. Therefore χ(EX
i ) ∈ Fq, i = 1, 2, · · · , tX = dim L.

(2) “ ⇐ ”: Assume χ(EX
i ) ∈ Fq, i = 1, 2, · · · , tX = dimL, then F0Jχ = Jχ, where

Jχ = 〈(EX
i )psi − (EX

i )ϕs − χ(EX
i )psi | i = 1, 2, · · · , tX〉. So F0 can be extended to be defined

on the generalized χ-reduced enveloping algebra Ups(L, χ). Assume λ ∈ (hX)∗ is a restricted

weight which is not exceptional, L0(λ) is the irreducible L[0]-module with “highest” weight λ.

Fix a “highest” weight vector vλ, then L0(λ) = Up(n
−)vλ = k-span{

s∏
i=1

Nai

i vλ | ai < p, i =

1, 2, · · · , s = (dimL[0] − dim hX)/2}, where the Ni’s are standard negative root vectors of the
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classical Lie algebra gl(m), sl(m) or sp(2r). Define

FM : M = Ups(L, χ)
⊗

Up(L0)
L0(λ) −→ M = Ups(L, χ)

⊗
Up(L0)

L0(λ)

∑
ak,l(E

X
1 )k1 · · · (EX

m )km ⊗ N l1
1 · · ·N ls

s vλ 7−→
∑

aq
k,l(E

X
1 )k1 · · · (EX

m)km ⊗ N l1
1 · · ·N ls

s vλ.

Note that the structure constants with respect to the standard basis of L are integers (see

Remark 1.1), hX
i · vλ = λ(hX

i )vλ, λ(hX
i ) ∈ Fp and χ(EX

i ) ∈ Fq. These facts assure that FM

defined above is a module Frobenius morphism. Then M is split over Fq by Remark 3.2. The

argument for the exceptional case is similar by the precise construction of exceptional irreducible

modules in [5,7,21−23].

By Theorem 3.2 and Theorem 1.1, we immediately obtain the following:

Corollary 3.1 Let L = X(m;n), X ∈ {W, S, H, K}, be a graded Lie algebra of Cartan

type over k = F̄q with standard Frobenius morphism F0 defined as in Remark 1.4. Let LFq
=

LF0 = Fq-span{EX
i | i = 1, 2, · · · , tX} be the corresponding Cartan type Lie algebra over a

finite field Fq. Let χ ∈ (LFq
)∗ with ht(χ) 6 0. Then every irreducible LFq

-module M with

character χ is as follows.

(1) Non-exceptional case. i.e. there doesn’t exist an irreducible (LFq
)
0
-submodule of M with

an exceptional weight ωi as its “highest” weight.

In this case, M ∼= Ups(LFq
, χ)

⊗
Up((LFq )

0
)(LFq

)
0
(λ) for some λ ∈ (hX)∗ with λ(hX

i ) ∈ Fp

for all i = 1, 2, · · · , dim hX . Here (LFq
)
0
(λ) is the irreducible restricted (LFq

)
[0]

-module

with “highest” weight λ which can be viewed as an irreducible (LFq
)
0
-module with trivial

action by (LFq
)
1
.

(2) Exceptional case. i.e. there exists an irreducible (LFq
)
0
-submodule of M with an excep-

tional weight ωi as its “highest” weight.

In this case, M ∼=
(
Ups(LFq

, χ)
⊗

Up((LFq )0)(LFq
)0(ωi)

)
/M ′, where (LFq

)0(ωi) is the ir-

reducible restricted (LFq
)
[0]

-module with the exceptional “highest” weight ωi which can

be viewed as an irreducible (LFq
)0 -module with trivial action by (LFq

)1 . And M ′ is the

unique maximal submodule of Ups(LFq
, χ)

⊗
Up((LFq )0 )(LFq

)0(ωi).

Remark 3.3 When X ∈ {W, S, H}, ht(χ) = −1, i.e. χ = 0. It is obvious that χ ∈
(LFq

)∗. In this case, the results in the Corollary 3.1 were obtained in [5] by Shen using the

techniques of “mixed product” (cf. [5, Remark 4.1]).

4 Further discussion on representations of the Witt alge-
bra over a finite field

In this section, we assume that L = W (1,1) is the Witt algebra. Then L has a standard

basis {ei | i = −1, 0, · · · , p − 2} with the Lie bracket satisfying

[ei, ej ] =

{
(j − i)ei+j , if − 1 6 i + j 6 p − 2,

0, otherwise.
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Let F0, LFq
be as before, i.e. F0

( p−2∑
i=−1

aiei

)
= aq

i ei, and LFq
= Fq-span{ei | i = −1, 0, · · · , p−2}.

We will study irreducible LFq
-modules over a finite field Fq. For that, we first recall the well-

known facts about irreducible representations of L over an algebraically closed field k = F̄q.

Theorem 4.1[2,27] Every irreducible L-module M corresponds to a unique character

χ ∈ L∗. Assume ht(χ) = r < p − 1. Then

Case I: r = −1. In this case, M ∼= M(λ) := U(L, χ)
⊗

Up(L0)
L0(λ) for some λ ∈

{2, 3, · · · , p − 1}, or M ∼= M(µ) :=
(
U(L, χ)

⊗
Up(L0)

L0(µ)
)
/M̃ for some µ ∈ {0, 1}. Here

L0(λ) for λ ∈ Fp represents a one-dimensional restricted h = ke0-module with the action of e0

as multiplication by the scalar λ, which can be viewed as an L0-module with trivial action by

L1. And M̃ is the unique maximal submodule of U(L, χ)
⊗

Up(L0)
L0(µ).

Case II: 0 6 r < p − 1. In this case, M ∼= U(L, χ)
⊗

U(Ls, χ) kχ. Here s = [ r
2 ] and kχ is a

one-dimensional U(Ls, χ)-module with a basis vχ such that xvχ = χ(x)vχ, ∀x ∈ Ls ∩ L1.

Moreover, when r = −1 or 1, there are totally p non-isomorphic irreducible L-modules

with character χ. When r = 0, there are totally p − 1 non-isomorphic irreducible L-modules

with character χ. When 1 < r < p − 1, up to isomorphism, there is only one irreducible

L-module with character χ. The dimensions are given as follows.

dimk M =





1, if r = −1, M ∼= M(0),

p − 1, if r = −1, M ∼= M(1),

p, if r = −1, M ∼= M(λ), λ ∈ {2, 3, · · · , p − 1},
ps+1, if 0 6 r < p − 1.

Applying Theorem 1.1 and Theorem 4.1, we obtain the following result on representations

of the Witt algebra L over a finite field Fq and its algebraic closure k = Fq.

Theorem 4.2 The following statements hold.

(1) Assume M is an irreducible L-module with character χ of height less than p − 1, and M

is split over Fq. Then χ(ei) ∈ Fq, ∀ − 1 6 i 6 p − 2.

(2) Let χ ∈ L∗ with ht(χ) < p − 1 and χ(ei) ∈ Fq, ∀ − 1 6 i 6 p − 2. Moreover, when

ht(χ) = 1, χ additionally satisfies that λ ∈ Fq for any λ satisfying λp − λ = χ(e0)
p.

Then any irreducible L-module M with character χ is split over Fq.

Proof Assume M is an irreducible L-module with character χ, we can assume ht(χ) > 0

if we take Theorem 3.2 into account. With this assumption, by Theorem 4.1, if r = ht(χ) > 1,

then M = U(L, χ)vχ such that xvχ = χ(x)vχ, ∀x ∈ Ls, where s = [ r
2 ]. And if r = ht(χ) = 1,

then M = U(L, χ)vχ such that xvχ = χ(x)vχ, ∀x ∈ L1 and e0vχ = λvχ for some λ satisfying

λp − λ = χ(e0)
p.

(1) If M is split over Fq, then by Remark 3.2, there exists a module Frobenius morphism

FM on M such that M = M1

⊗
Fq

k, where M1 = MFM is an LF0-module. Therefore

0 = FM ((ep

i −e
[p]
i −χ(ei)

p)M) = (F0(ei)
p
−F0(ei)

[p]
−χ(ei)

pq)M = (ep

i−e
[p]
i −χ(ei)

pq)M,∀−1 6 i 6 p−2.

which implies that χ(ei) ∈ Fq, ∀ − 1 6 i 6 p − 2.
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(2) By the assumption stated, F0Jχ = Jχ, where Jχ = 〈ep
i −e

[p]
i −χ(ei)

p | −1 6 i 6 p−2〉.
Therefore, F0 can be extended to be defined on the χ-reduced enveloping algebra U(L, χ).

Define
FM : M = U(L, χ)vχ −→ M = U(L, χ)vχ∑

ai e
i1
−1e

i2
0 · · · eis−1

s−1 vχ 7−→
∑

aq
i
ei1
−1e

i2
0 · · · eis−1

s−1 vχ

Then one can easily check that FM is a module Frobenius morphism on M . Hence, by Theorem

1.1, MFM is an irreducible LF0-module, and M ∼= MFM
⊗

Fq
k. Therefore M is split over Fq.

Applying Theorem 1.1, Theorem 4.1 and Theorem 4.2, we immediately obtain the following

corollary.

Corollary 4.1 Let L = W (1;1) be the Witt algebra over an algebraic closed field k = F̄q.

Let F0 be the standard Frobenius morphism on L. Set LFq
= LF0 = Fq-span{ei | −1 6 i 6 p−2}

which is the Witt algebra over a finite field Fq. Assume χ ∈ (LFq
)∗ such that r = ht(χ) < p−1.

Moreover, if r = 1, assume additionally that λ ∈ Fq for all λ satisfying λp − λ = χ(e0)
p. Then

any irreducible LFq
-module M with character χ over a finite field Fq is as follows.

Case I: r = −1. In this case, M ∼= M(λ) := U(LFq
, χ)

⊗
Up((LFq )

0
)(LFq

)
0
(λ) for some λ ∈

{2, · · · , p−1}, or M ∼= M(µ) :=
(
U(LFq

, χ)
⊗

Up((LFq )
0
)(LFq

)
0
(µ)

)
/M ′ for some µ ∈ {0, 1}. Here

(LFq
)
0
(λ) with λ ∈ Fp represents a one-dimensional restricted h = Fqe0-module with the action

of e0 as multiplication by the scalar λ, which can be viewed as an (LFq
)
0
-module with the trivial

action by (LFq
)
1
. And M ′ is the unique maximal submodule of U(LFq

, χ)
⊗

Up((LFq )
0
)(LFq

)
0
(µ).

Case II: 0 6 r < p − 1. In this case, M ∼= U(LFq
, χ)

⊗
U((LFq )s, χ) 1χ. Here s = [ r

2 ] and

1χ is a one-dimensional U((LFq
)s, χ)-module with a basis wχ such that xwχ = χ(x)wχ, ∀x ∈

(LFq
)

s
∩ (LFq

)
1
.

Moreover, when r = −1 or 1, there are totally p non-isomorphic irreducible LFq
-modules

with character χ. When r = 0, there are totally p − 1 non-isomorphic irreducible LFq
-modules

with character χ. When 1 < r < p − 1, up to isomorphism, there is only one irreducible LFq
-

module with character χ. The dimensions of irreducible modules with character χ over Fq are

given as follows.

dimFq
M =





1, if r = −1, M ∼= M(0),

p − 1, if r = −1, M ∼= M(1),

p, if r = −1, M ∼= M(λ), λ ∈ {2, 3, · · · , p − 1},
ps+1, if 0 6 r < p − 1.
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