
1 3 Ï

2017 c 5 �

uÀ���ÆÆ�(g,�Æ�)
Journal of East China Normal University (Natural Science)

No. 3

May 2017

Article ID: 1000-5641(2017)03-0001-19

On modular representations of

finite-dimensional Lie superalgebras

YANG Heng-yun, YAO Yu-feng
(Department of Mathematics, Shanghai Maritime University, Shanghai 201306, China)

Abstract: In this paper, we studied representations of finite-dimensional Lie superalgebras

over an algebraically closed field F of characteristic p > 2. It was shown that simple modules

of a finite-dimensional Lie superalgebra over F are finite-dimensional, and there exists an

upper bound on the dimensions of simple modules. Moreover, a finite-dimensional Lie

superalgebra can be embedded into a finite-dimensional restricted Lie superalgebra. We

gave a criterion on simplicity of modules over a finite-dimensional restricted Lie superalgebra

g, and defined a restricted Lie super subalgebra, then obtained a bijection between the

isomorphism classes of simple modules of g and those of this restricted subalgebra. These

results are generalization of the corresponding ones in Lie algebras of prime characteristic.

Key words: Lie superalgebra; representation; p-envelope; p-character

CLC number: O152.5 Document code: A

DOI: 10.3969/j.issn.1000-5641.2017.03.001

kkk������ooo������êêê������LLL«««


ð�, �ü´

(þ°°¯�Æ êÆX, þ° 201306)

Á�: ïÄ
A��u2��ê4�þk��o��ê�L«. y²
k��o��ê�ü�

Ñ´k���, ¿�¤kü���êkþ.. ?�Ú,��k��o��ê�±i\���k�

���o��ê. �Ñ
k����o��ê g þü���½OK, ½Â
 g �����o�

f�ê, ��
Tf�ê�ü�Ó�aÚ g �ü�Ó�a�m���V�. ù
(J´�A�

�þo�ê�'nØ�í2.

'�c: o��ê; L«; p-�ä; p-A�

0 Introduction

Recall that the finite-dimensional simple Lie superalgebras over the field of complex num-

bers were classified by Kac in the 1970s (cf.[1]). Furthermore, their representation theory was

developed extensively.
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In recent years, there has been an increasing interest in modular representation theory

of restricted Lie superalgebras. A systematical research on modular representation theory was

initiated and developed in [2-6] for Lie superalgebras of classical type, and in [7-15] for Lie

superalgebras of Cartan type, respectively. W. Wang and L. Zhao[3] proved a super version of

the celebrated Kac-Weisfeiler Property for the classical Lie superalgebras, which by definition

admit an even non-degenerate supersymmetric bilinear form and whose even subalgebras are

reductive. In [7-15], all simple restricted and some simple non-restricted modules of Lie super-

algebras of Cartan type were classified. Moreover, character formulas for these simple modules

were given.

In this paper, we study the modular representations of finite-dimensional Lie superalge-

bras. This research is largely motivated by [3, 16, 17]. We briefly introduce the structure of

this paper. We collect the general notations and elementary preliminaries on Lie (associative)

superalgebras in Section 1. Then Section 2 is devoted to developing general representation

theory for a finite-dimensional Lie superalgebra g = g0̄ ⊕ g1̄ over an algebraically closed field

F of characteristic p > 2. We show that each simple g-module is of finite-dimensional, and

there exists an upper bound on the dimensions of simple modules. Moreover, g has a finite-

dimensional p-envelope which is a restricted Lie superalgebra. In some sense, this helps us to

reduce representations of finite-dimensional Lie superalgebras to those of restricted ones. We

then study irreducible representations of finite-dimensional restricted Lie superalgebras in Sec-

tion 3. We give a criterion for simplicity of an induced module of a finite-dimensional restricted

Lie superalgebra g, and obtain a bijection between the isomorphism classes of simple modules

of g and those of some restricted subalgebra (cf. Theorem 3.12). This reduces simple g-modules

to those simple modules of a certain restricted subalgebra.

1 Notations and preliminaries

In this paper, we always assume that the ground field F is algebraically closed and of prime

characteristic p > 2. We exclude the case p = 2, since in this case, Lie superalgebras coincide

with Z2-graded Lie algebras.

1.1 Basic definitions

A superspace is a Z2-graded vector space V = V0̄ ⊕ V1̄, in which we call elements in V0̄

and V1̄ even and odd, respectively. We usually write |v| ∈ Z2 for the parity (or degree) of

v ∈ V , which is implicitely assumed to be Z2-homogeneous. A superalgebra is a Z2-graded

vector space A = A0̄ ⊕ A1̄ endowed with an algebra structure “·” such that Aα · Aβ ⊆ Aα+β

for any α, β ∈ Z2. A superalgebra g = g0̄ ⊕ g1̄ with an algebra structure [−,−] is called a Lie

superalgebra if for any homogeneous elements x, y, z in g, the following conditions hold.

(i) [x, y] = −(−1)|x||y|[y, x];

(ii) [x, [y, z]] = [[x, y], z] + (−1)|x||y|[y, [x, z]].

Homomorphisms of superalgebras (Lie superalgebras) are those linear mappings which

reserve the Z2-grading and the superalgebra (Lie superalgebra) structure.
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For a Lie superalgebra g = g0̄ ⊕ g1̄, it follows from the definition that the even part g0̄

is a Lie algebra and the odd part g1̄ is a g0̄ -module under the adjoint action. Let (A, ·) be an

associative superalgebra, we denote [x, y] := x · y− (−1)|x||y|y ·x for any homogeneous elements

x, y ∈ A. Then (A, [−,−]) is a Lie superalgebra.

Example 1.1 Let V = V0̄ ⊕ V1̄ be a Z2-graded vector space over F with dim V0̄ = m

and dimV1̄ = n. Then the algebra EndF(V ) consisting of F-linear transformation of V is an

associative superalgebra with

EndF(V )α := {A ∈ EndF(V ) | A(Vβ) ⊆ Vα+β , ∀β ∈ Z2}, α ∈ Z2.

Moreover, for any homogeneous elements A, B ∈ EndF(V ), we define a new multiplication [−,−]

by

[A, B] := AB − (−1)|A||B|BA.

Then (EndF(V ), [−,−]) is the so-called general linear Lie superalgebra, denoted by gl(V ) =

gl(V )0̄ ⊕ gl(V )1̄ or gl(m|n) = gl(m|n)0̄ ⊕ gl(m|n)1̄. More precisely,

gl(m|n)0̄ =

{(
A 0

0 D

)∣∣∣∣∣A ∈ Matm×m, D ∈ Matn×n

}
,

gl(m|n)1̄ =

{(
0 B

C 0

) ∣∣∣∣∣B ∈ Matm×n, C ∈ Matn×m

}
,

where Mati×j denotes the set of all i × j matrices for i, j ∈ N\{0}.

Definition 1.2 Let g = g0̄ ⊕ g1̄ be a Lie superalgebra. A Z2-graded vector space

V = V0̄ ⊕ V1̄ is called a g-module if there exists a Lie superalgebra homomorphism from g to

gl(V ).

Let g = g0̄ ⊕ g1̄ be a Lie superalgebra. Denote by U(g) the universal enveloping super-

algebra of g, which is the quotient of the tensor superalgebra T (g) by the ideal generated by

[x, y] − xy + (−1)|x||y|yx for any x, y ∈ g0̄ ∪ g1̄. Set Z(g) = {u ∈ U(g)0̄ | uv = vu, ∀ v ∈ U(g)}

which is called the even center of U(g).

In this paper, all Lie superalgebras are assumed to be finite-dimensional. By vector spaces,

subalgebras, ideals, submodules etc., we mean in the super sense unless otherwise stated.

1.2 Key lemmas

In this subsection, we present several lemmas for later use. Let A = A0̄ ⊕ A1̄ be a

superalgebra. For elements y, z1, · · · , zn in A and

s = (s1, · · · , sn), t = (t1, · · · , tn) ∈ Nn,

set

z := (z1, · · · , zn) ∈ An, zs := zs1

1 · · · zsn
n ∈ A,
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and

{y, z; t} := [· · · [· · · [· · · [[· · · [y, z1], · · · , z1]︸ ︷︷ ︸
t1times

, z2], · · · , z2]︸ ︷︷ ︸
t2 times

, · · · , zn], · · · , zn]︸ ︷︷ ︸
tn times

∈ A

with the convention that {y, z;0} = y. Let

|s| :=

n∑

i=1

si,

(
s

t

)
:=

n∏

i=1

(
si

ti

)
.

We define a partial order “4” on Nn as follows.

t 4 s if and only if ti 6 si, ∀ 1 6 i 6 n.

Lemma 1.3 Assume A = A0̄ ⊕ A1̄ is an associative superalgebra. Let y ∈ A0̄ ∪ A1̄,

z1, · · · , zm ∈ A0̄ and zm+1, · · · , zn ∈ A1̄. Let s = (s1, · · · , sn) ∈ Nn with si ∈ {0, 1} for

m + 1 6 i 6 n. Then

yzs =
∑

04t4s

±

(
s

t

)
zs−t{y, z; t}. (1.1)

Proof It is trivial for s = 0. In the following, we assume s 6= 0. For any x ∈ A0̄, let

Lx, Rx denote the left and right multiplications by x in A, respectively. Then Rx = Lx − adx,

and Lx commutes with adx. We divide the proof into three cases.

Case 1 sm+1 = sm+2 = · · · = sn = 0.

In this case, we proceed by induction on m. The case m = 1 follows from the following

computation.

yzs1

1 = Rz1
◦ Rz1

◦ · · · ◦ Rz1︸ ︷︷ ︸
s1 times

(y)

= (Lz1
− adz1)

s1(y)

=
∑

06t16s1

(−1)t1

(
s1

t1

)
Ls1−t1

z1
(adz1)

t1(y)

=
∑

06t16s1

(
s1

t1

)
zs1−t1
1 [· · · [y, z1], · · · , z1]︸ ︷︷ ︸

t1 times

.

Assume that m > 1. Let y′ := yzs1

1 · · · z
sm−1

m−1 , s′ = (s1, · · · , sm−1). The induction hypothesis
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yields

yss = y′zsm
m

=
∑

04t′4s′

±

(
s′

t′

)
zs

′−t
′

{y, z; t′}zsm
m

=
∑

04t′4s′

±

(
s′

t′

)
zs

′−t
′

∑

06tm6sm

±

(
sm

tm

)
zsm−tm

m {{y, z; t′}, zm; tm}

=
∑

04t′4s′

∑

06tm6sm

±

(
s′

t′

)(
sm

tm

)
zs

′−t
′

zsm−tm
m {y, z; (t′, tm)}

=
∑

04t4s

±

(
s

t

)
zs−t{y, z; t}.

Hence, (1.1) holds in this case.

Case 2 s1 = s2 = · · · = sm = 0.

In this case, we proceed by induction on n − m. If n − m = 1, then

yzm+1 = [y, zm+1] + (−1)|y|zm+1y.

Hence, (1.1) holds in this case. Assume that n − m > 1. Put y′ = yz
sm+1

m+1 · · · z
sn−1

n−1 and

s′ = (0, 0, · · · , 0︸ ︷︷ ︸
m times

, sm+1, sm+2, · · · , sn−1).

The induction hypothesis yields

yzs = y′zn

=
∑

04t′4s′

±

(
s′

t′

)
zs

′−t
′

{y, z; t′}zn

=
∑

04t′4s′

±

(
s′

t′

)
zs

′−t
′

[{y, z; t′}, zn] +
∑

04t′4s′

±

(
s′

t′

)
zs

′−t
′

zn{y, z; t′}

=
∑

04t′4s′

±

(
s′

t′

)
zs

′−t
′

{y, z; (t′, 1)} +
∑

04t′4s′

±

(
s′

t′

)
zs

′−t
′

zn{y, z; (t′, 0)}

=
∑

04t4s

±

(
s

t

)
zs−t{y, z; t}.

Hence, (1.1) holds in this case.

Case 3 (s1, · · · , sm) 6= 0 and (sm+1, · · · , sn) 6= 0.

Let s′ = (s1, · · · , sm, 0, · · · , 0), s′′ = (0, · · · , 0, sm+1, · · · , sn). It follows from Case 1 and
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Case 2 that

yzs = yzs
′

zs
′′

=
∑

04t′4s′

±

(
s′

t′

)
zs

′−t
′

{y, z; t′}zs
′′

=
∑

04t′4s′

±

(
s′

t′

)
zs

′−t
′
∑

04t′′4s′′

±

(
s′′

t′′

)
zs

′′−t
′′

{{y, z; t′}, z; t′′}

=
∑

04t′4s′

04t′′4s′′

±

(
s′

t′

)(
s′′

t′′

)
zs

′−t
′

zs
′′−t

′′

{{y, z; t′}, z; t′′}

=
∑

04t4s

±

(
s

t

)
zs−t{y, z; t}.

Hence, (1.1) holds in this case.

In conclusion, we finish the proof by the three cases above.

We have the following super version of Engel’s Theorem in Lie algebras.

Lemma 1.4 Let V = V0̄ ⊕ V1̄ be a finite-dimensional Z2-graded vector space and g ⊆

gl(V ) be a Lie super subalgebra. Moreover, assume that g consists of nilpotent transformations.

Then there exists a nonzero element v ∈ V0̄ ∪ V1̄ such that xv = 0 for any x ∈ g.

Proof Let m = dimg1̄. We proceed by induction on m. For the case m = 0, the assertion

follows from Engel’s Theorem (see [18]). Assume that m = 1 and g1̄ = span
F
{y}. Since y is

nilpotent, W1 := {v ∈ V | yv = 0} is a nonzero Z2-graded subspace. Moreover, it is easy to

check that W1 is a g0̄ -submodule. By Engel’s Theorem again, W2 := {v ∈ W1 | xv = 0, ∀x ∈

g0̄} is a nonzero Z2-graded subspace. Consequently, any nonzero homogeneous vector v in W2

satisfies the desired requirement.

Assume that n > 1 and the assertion holds for any m < n. We will show that it also holds

for m = n. For that, regard g1̄ as a g0̄ -module via adjoint action. Since

(adx)pr

(y) = xpr

y − yxpr

= 0, ∀x ∈ g0̄, y ∈ g1̄, r > 0,

it follows that dimF[g0̄, g1̄] < dimF g1̄ = n by applying Engel’s Theorem to g0̄ and its adjoint

module g1̄. This implies that the odd part of the derived algebra [g, g] has dimension strictly

less than n. According to the induction hypothesis, W3 := {v ∈ V | xv = 0, ∀x ∈ [g, g]} is a

nonzero Z2-graded subspace.

Let {x1, · · · , xl} be a homogeneous basis of g. Since x1 is nilpotent, and W3 is invariant

under the action of x1, it follows that W x1

3 := {v ∈ W3 | x1v = 0} is a nonzero Z2-graded

subspace. For 2 6 i 6 l, define W x1,··· ,xi

3 := {v ∈ W
x1,··· ,xi−1

3 | xiv = 0} inductively. These are

nonzero Z2-graded subspaces by a similar argument. Then any nonzero homogeneous vector v

in W x1,··· ,xl

3 satisfies the requirement of the assertion.

As a consequence of Lemma 1.4, we get the following preliminary result on representations

of Lie superalgebras.

Lemma 1.5 Let V = V0̄ ⊕ V1̄ be a Z2-graded vector space and g ⊆ L ⊆ gl(V ) be Lie

super subalgebras. Then the following statements hold.
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(1) If [g, g] consists of nilpotent transformations and F contains all eigenvalues of elements

in g, then there exists nonzero v ∈ V0̄ ∪ V1̄ and λ ∈ g∗ such that xv = λ(x)v, ∀x ∈ g.

(2) Let λ : g −→ F be an eigenvalue function, i.e., x− λ(x) idV is nilpotent for any x ∈ g.

Suppose that λ(x) = 0 for any x ∈ [g, g]. Then λ is linear.

(3) Keep assumptions as in (1). Moreover, assume that g is an ideal of L and V is an

irreducible L-module. Then [g, g] = 0, and any x ∈ g has a unique eigenvalue λ(x) on V , and

λ : g −→ F is linear.

Proof (1) According to Lemma 1.4,

W1 := {v ∈ V | xv = 0, ∀x ∈ [g, g]} 6= 0.

Take any x ∈ g1̄ and y, z ∈ g0̄ ∪ g1̄, then

[y, z]xv = [[y, z], x]v + (−1)|y|+|z|x[y, z]v = 0.

Hence, W1 is invariant under the action of g1̄. Moreover, since

x2v =
1

2
[x, x]v = 0 and xyv = −yxv, ∀x, y ∈ g1̄, v ∈ W1,

it follows that

W2 := {v ∈ W1 | xv = 0, ∀x ∈ g1̄} 6= 0.

Furthermore, W2 is a g0̄ -submodule with xyw = yxw, ∀x, y ∈ g0̄, w ∈ W2, so that we can find

a nonzero homogeneous element v in W2 and λ ∈ g∗ such that xv = λ(x)v, ∀x ∈ g.

(2) By (1), there exists v ∈ V0̄ ∪V1̄ such that xv = λ(x)v. Since the left hand side is linear

in x, so is the right hand side.

(3) By (1), there exists v ∈ V0̄ ∪V1̄ such that xv = 0, ∀x ∈ [g, g]. Since V is an irreducible

L-module, V = U(L)v. Consequently, [g, g] acts trivially on V , since g is an ideal of L. This

means that [g, g] = 0. Let x ∈ g0̄ and λ(x) be an eigenvalue of x, then [xp, L] = (adx)pL ⊂

[g, g] = 0, and V := {v ∈ V | xpv = λ(x)pv} is a nonzero L-submodule. The irreducibility of V

as an L-module implies that V coincides with V , i.e., x − λ(x) idV is nilpotent. Hence, λ(x) is

the unique eigenvalue of x. On the other hand, for any x ∈ g1̄,

x2 =
1

2
[x, x] ∈ [g, g] = 0.

This implies that any element x ∈ g1̄ is nilpotent, and 0 is the unique eigenvalue. The assertion

that λ is linear follows from (2).

1.3 Restricted Lie superalgebras

The following definition is a generalization of the notion of restricted Lie algebras[17,19] to

the case of Lie superalgebras.

Definition 1.6[20] A Lie superalgebra g = g0̄ ⊕ g1̄ is called a restricted one if g0̄ is

a restricted Lie algebra and g1̄ is a restricted g0̄ -module under the adjoint action. This is
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equivalent to saying that there exists a so-called p-mapping [p] on g0̄ such that the following

properties hold:

(i) (adx)p = ad(x[p]) for all x ∈ g0̄;

(ii) (ax)[p] = apx[p] for all a ∈ F, x ∈ g0̄;

(iii) (x + y)[p] = x[p] + y[p] +
p−1∑
i=1

si(x, y) for all x, y ∈ g0̄, where those si(x, y) ∈ g0̄ (1 6 i 6

p − 1) are defined via the following formula:

ad(tx + y)p−1(x) =

p−1∑

i=1

isi(x, y)ti−1 for all x, y ∈ g0̄.

Here t is an indeterminate.

Remark 1.7 Let (g, [p]) be a restricted Lie superalgebra. Set ξ(x) := xp−x[p] ∈ U(g) for

x ∈ g0̄. According to Definition 1.6(i), ξ(x) ∈ Z(g) for any x ∈ g0̄. Moreover, ξ : g0̄ −→ Z(g)

is p-semilinear, i.e., ξ(ax + by) = apξ(x) + bpξ(y), ∀x, y ∈ g0̄, a, b ∈ F.

Example 1.8 Let g = gl(m|n) be the general linear Lie superalgebra. Let

[p] : g0̄ −→ g0̄

x 7−→ xp,

where xp = x · x · · · · · x︸ ︷︷ ︸
p times

. Then (g, [p]) is a restricted Lie superalgebra. More generally, Lie

superalgebras of algebraic supergroups are restricted Lie superalgebras (see [2]).

Proposition 1.9 Let g be a restricted subalgebra of a restricted Lie superalgebra (G, [p]).

Let [p]′ : g0̄ −→ g0̄ be a mapping. Then the following statements are equivalent.

(1) [p]′ is a p-mapping on g.

(2) There exists a p-semilinear mapping f : g0̄ −→ z
G

0̄
(g) such that [p]′ = [p]|g0̄

+f , where

z
G

0̄
(g) = {x ∈ G0̄ | [x, y] = 0, ∀ y ∈ g}.

Proof (1) =⇒ (2). Set

f : g0̄ −→ G0̄

x 7−→ x[p]′ − x[p].

Since

[f(x), y] = [x[p]′ − x[p], y] = (adx)p(y) − (adx)p(y) = 0, ∀x ∈ g0̄, y ∈ g,

f actually maps g0̄ into z
G

0̄
(g). For any x, y ∈ g0̄ and a, b ∈ F, we have

f(ax + by) = apx[p]′ + bpy[p]′ +

p−1∑

i=1

si(ax, by) −
(
apx[p] + bpy[p] +

p−1∑

i=1

si(ax, by)
)

= apf(x) + bpf(y).

Consequently, f is p-semilinear.

(2) =⇒ (1). We need to show that the three conditions in Definition 1.6 hold for [p]′.
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(i) ad(x[p]′) = ad(x[p] + f(x)) = ad(x[p]) = (adx)p, ∀x ∈ g0̄.

(ii) (λx)[p]′ = (λx)[p] + f(λx) = λpx[p] + λpf(x) = λpx[p]′ , ∀x ∈ g0̄, λ ∈ F.

(iii) For any x, y ∈ g0̄,

(x + y)[p]′ = (x + y)[p] + f(x + y) = x[p] + f(x) + y[p] + f(y) +

p−1∑

i=1

si(x, y)

= x[p]′ + y[p]′ +

p−1∑

i=1

si(x, y).

The proof is completed.

Let (g, [p]) be a finite-dimensional restricted Lie superalgebra over F. Let Z0(g) be the

F-algebra generated by xp−x[p] for x ∈ g0̄. Let I0(g) be the ideal in U(g) generated by xp−x[p]

for x ∈ g0̄, and u(g) = U(g)/I0(g) which is usually called the restricted enveloping superalgebra.

Suppose that {x1, · · · , xn} is a basis of g0̄, and {y1, · · · , ym} is a basis of g1̄. It follows from the

semilinearity of ξ that Z0(g) is generated by ξ(x1), · · · , ξ(xn). Moreover, by PBW Theorem,

we have

Proposition 1.10 Keep notations as above, then the following statements hold.

(1) The elements ξ(x1), · · · , ξ(xn) are algebraically independent generators for Z0(g), i.e.,

Z0(g) = F[ξ(x1), · · · , ξ(xn)] is a polynomial algebra of n indeterminates.

(2) The universal enveloping superalgebra U(g) is free over Z0(g) with basis

{xa1

1 · · ·xan
n yb1

1 · · · ybm
m | 0 6 ai 6 p − 1, bj = 0, 1, 1 6 i 6 n, 1 6 j 6 m}.

(3) The restricted enveloping superalgebra u(g) is finite-dimensional, and has a basis

{x̄a1

1 · · · x̄an
n ȳb1

1 · · · ȳbm
m | 0 6 ai 6 p − 1, bj = 0, 1, 1 6 i 6 n, 1 6 j 6 m}.

2 General representation theory

In this section, we always assume that g = g0̄ ⊕ g1̄ is a finite-dimensional Lie superalgebra

over an algebraically closed field of characteristic p > 2. We will show that each simple g-

module is finite-dimensional, and the dimensions of simple g-modules have an upper bound.

Moreover, each finite-dimensional Lie superalgebra can be embedded into a finite-dimensional

restricted Lie superalgebra.

Proposition 2.1 Let g = g0̄ ⊕ g1̄ be a finite-dimensional Lie superalgebra over an

algebraically closed field F of characteristic p > 2. Then the universal enveloping superalgebra

U(g) is a finitely generated Z(g)-module, and Z(g) is a finitely generated F-algebra.

Proof (1) Let {x1, · · · , xn} be a basis of g0̄ and {y1, · · · , ym} be a basis of g1̄. Consider

{(adxi)
pj

| 1 6 i 6 n, j = 0, 1, · · · }

as elements in EndF(g). Since g is finite-dimensional, there exists di ∈ N (1 6 i 6 n) such that

(adxi)
pdi

=
∑

06j<di

aij(adxi)
pj

, ∀ 1 6 i 6 n.
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Consequently, zi := xpdi

i −
∑

06j<di

aijx
pj

i ∈ Z(g), 1 6 i 6 n. Let O be the subalgebra of Z(g)

generated by zi, 1 6 i 6 n. By PBW Theorem, O is a polynomial algebra of n indeterminates,

and as an O-module, U(g) is spanned by

{xi1
1 · · ·xin

n yj1
1 · · · yjm

m | 0 6 ik < pdk , js = 0, 1, 1 6 k 6 n, 1 6 s 6 m}. (2.1)

In particular, as a Z(g)-module, U(g) is spanned by those elements in (2.1).

(2) By (1), U(g) is a Noetherian O-module. Hence, as a submodule, Z(g) is also a

Noetherian O-module. Consequently, Z(g) is a finitely generated O-module. Since O is finitely

generated, it follows that Z(g) is also finitely generated.

Theorem 2.2 Let g = g0̄ ⊕ g1̄ be a finite-dimensional Lie superalgebra over an alge-

braically closed field F of characteristic p > 2. Then the following statements hold.

(1) Each irreducible representation of g is finite-dimensional.

(2) There exists a positive integer M(g) such that every irreducible representation of g has

dimension less than M(g).

Proof By Proposition 2.1, we can assume that U(g) =
r∑

i=1

Z(g)ui. Let V be a simple

g-module. Take a nonzero homogeneous element v in V , then

V = U(g)v =

r∑

i=1

Z(g)uiv.

Hence, the module V is finitely generated over Z(g). Since Z(g) is Noetherian, there exists a

maximal Z(g)-submodule V ′ ⊂ V . Consequently, V/V ′ ∼= Z(g)/m as Z(g)-modules for some

maximal ideal m of Z(g). Hence, mV ⊆ V ′ $ V . Since mV is a U(g)-submodule of V and V

is irreducible, it follows that mV = 0. Therefore, Z(g) acts on V as Z(g)/m ∼= F. Part (1) is

proved. Moreover, by the discussion above, r + 1 is an upper bound M(g).

Remark 2.3 When g is a restricted Lie superalgebra, the results in Theorem 2.2 were

asserted in [3].

Example 2.4 Let g = g0̄ ⊕ g1̄ be a subalgebra of gl(2|1) with g0̄ = span
F
{h, x}, g1̄ =

span
F
{y}, where

h =




1 0 0

0 0 0

0 0 0



 , x =




0 1 0

0 0 0

0 0 0



 , y =




0 0 1

0 0 0

0 0 0



 .

Note that

[h, x] = x, [h, y] = y, [x, y] = [y, y] = 0

and

h[p] = h, x[p] = 0.
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Hence, xp and hp − h are contained in Z(g). Consequently,

U(g) =
∑

06i,j<p

06k61

Z(g)hixjyk.

It is easy to check that

hxi = xi(h + i), xhj = (h − 1)jx, ∀ 1 6 i, j 6 p − 1. (2.2)

Let M = M0̄ ⊕ M1̄ be an irreducible g-module. By Theorem 2.2, M is finite-dimensional and

xp acts as a scalar on M , saying ap. Hence, (x − a)p · M = (xp − ap) · M = 0.

Case 1 a = 0.

Let g′ = span
F
{x, y}. Then g′ is a subalgebra of g. According to Lemma 1.4, M ′ := {m ∈

M | z · m = 0, ∀ z ∈ g′} is a nonzero Z2-graded subspace. Moreover, M ′ is a g-submodule of

M , so that M = M ′ by the irreducibility of M as a g-module. Hence, M is a simple module

for the commutative Lie algebra g/g′ ∼= Fh. Therefore, dimF M = 1 and h acts as a scalar on

M , while x, y act trivially. Conversely, given any scalar b ∈ F, we get a one-dimensional simple

g-module, denoted by Mb, in which h acts as multiplication by b, and g′ acts trivially.

Case 2 a 6= 0.

In this case, there exists 0 6= v0 ∈ M0̄ ∪ M1̄ such that x · v0 = av0. Since M is finite-

dimensional and hp − h ∈ Z(g), there exists b ∈ F such that

(hp − h) · v = hp · v − h · v = bpv, ∀ v ∈ M.

Set vi := hi · v0 for 1 6 i 6 p. Then vp = bpv0 + v1. By (2.2), for 1 6 i 6 p − 1, we have

x · vi = (h − 1)iav0 = a

i∑

j=0

(−1)j

(
i

j

)
vi−j . (2.3)

It follows that M ′′ := span
F
{v0, v1, · · · , vp−1} is stable under x and h. We claim that

v0, · · · , vp−1 are linearly independent. Suppose the contrary, then there exists some j < p − 1

such that M ′′ = span
F
{v0, v1, · · · , vj}. It follows from (2.3) that tr(x|M ′′ ) = (j + 1)a. On

the other hand, since [h, x] = x, we have tr(x|M ′′ ) = 0. This implies that (j + 1)a = 0, i.e.,

j +1 ≡ 0 (mod p), a contradiction. Therefore, v0, v1, · · · , vp−1 are linearly independent. More-

over, M ′′ is an irreducible g0̄ -submodule, since up to scalars, v0 is the unique eigenvector of x

on M ′′. We have the following natural epimorphism of g-modules:

π : U(g) ⊗U(g0̄) M ′′ −→ M,

which is surjective by the simplicity of M as a g-module. It is easy to check that U(g)⊗U(g0̄)M
′′

has a unique maximal submodule y ⊗ M ′′. Consequently, M ∼= U(g) ⊗U(g0̄) M ′′/y ⊗ M ′′, and

dimF M = p. Conversely, given a, b ∈ F with a 6= 0, we have a simple g-module M of dimension

p with basis v0, · · · , vp−1 such that y acts trivially, and the actions of h and x are given as

above. We denote this simple g-module by M(a,b).
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In conclusion, {Mb,M(a,b) | a ∈ F×, b ∈ F} exhausts all non-isomorphic irreducible g-

modules.

In the following, we study the connection of restricted and ordinary Lie superalgebras.

Definition 2.5 Let g = g0̄ ⊕ g1̄ be a Lie superalgebra.

(1) A triple (G, [p], ι) consisting of a restricted Lie superalgebra (G, [p]) and a Lie super-

algebra homomorphism ι : g −→ G is called a p-envelope of g if ι is injective and G = ι(g)p,

where ι(g)p denotes the restricted subalgebra generated by ι(g).

(2) A p-envelope (G, [p], ι) of g is called universal, if it satisfies the following universal

property: For any restricted Lie superalgebra (H, [p]′) and any homomorphism f : g −→ H ,

there exists a unique restricted homomorphism g : (G, [p]) −→ (H, [p]′) such that g ◦ ι = f .

The following result asserts that the universal p-envelope of a Lie superalgebra always

exists and is unique.

Proposition 2.6 Every Lie superalgebra g = g0̄ ⊕ g1̄ has a unique universal p-envelope

ĝ.

Proof Let ĝ be the restricted subalgebra of U(g) generated by g. Let H be a restricted

Lie superalgebra and f : g −→ H be a homomorphism. Recall that H canonically embedded

into u(H). The universal property of U(g) gives rise to an associative homomorphism f̄ :

U(g) −→ u(H) and g ⊂ f̄−1(H). Let x ∈ g0̄ ⊂ f̄−1(H0̄), then f̄(x) ∈ H0̄ and f̄(xp) = f̄(x)p =

f̄(x)[p] ∈ H . So, xp ∈ f̄−1(H). Therefore, f̄ : ĝ −→ H is an extension of f . Since ĝ is

generated by g and the p-th powers, this extension is unique. The uniqueness of ĝ follows from

the definition of the universal p-envelope.

Proposition 2.7 Let g = g0̄ ⊕ g1̄ be a Lie superalgebra. Then the following statements

hold.

(1) If g is finite-dimensional, and (ḡ, [p], ι) is a p-envelope of g, then ḡ/C(ḡ) is finite-

dimensional.

(2) If g is finite-dimensional, then g possesses a finite-dimensional p-envelope.

(3) Each homomorphism of Lie superalgebras f : g −→ h can be extended to a restricted

homomorphism f̂ : ĝ −→ ĥ. Moreover, if f is injective or surjective, so is f̂ .

Proof (1) Recall that ḡ = ι(g)p, the restricted subalgebra generated by ι(g). Hence,

[ḡ, ḡ] ⊂ ι(g), and ι(g) is an ideal of ḡ. Let

ϕ : ḡ −→ DerF(ι(g))

x 7−→ adx|ι(g).

It is easy to check that Kerϕ = zḡ(ι(g)) = zḡ(ḡ) = C(ḡ). Consequently,

dimFḡ/C(ḡ) 6 dimFDerF(ι(g)) 6 dimFEndF(ι(g)) = (dimFg)2 < +∞.

(2) Choose a Z2-graded subspace V ⊂ C(ĝ) such that C(ĝ) = V ⊕ (C(ĝ) ∩ g). Then

by Proposition 1.9, we can endow a [p]-structure on ĝ/V which contains g isomorphically.

Moreover,

dimFĝ/V = dimFĝ/C(ĝ) + dimFC(ĝ) ∩ g < +∞.
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Then the restricted subalgebra generated by g in ĝ/V is the desired p-envelope of g.

(3) Since g −→ h →֒ ĥ, the universal property of ĝ yields the existence of f̂ such that the

following diagram is commutative.

g −−−−→ ĝ

f

y
yf̂

h −−−−→ ĥ

If f is onto, then f̂(ĝ) ⊃ f(g)p = hp = ĥ, i.e., f̂(ĝ) = ĥ. If f is injective, it extends to an

injective homomorphism U(g) →֒ U(h). Hence, its restriction f̂ to ĝ is injective.

The following result is a superversion of Iwasawa’s Theorem in the case of Lie algebras.

Theorem 2.8 Let g = g0̄ ⊕ g1̄ be a finite-dimensional Lie superalgebra. Then g admits

a finite-dimensional faithful representation ρ. Moreover, assume x ∈ g0̄, then ρ(x) is nilpotent

if and only if adx is nilpotent.

Proof We first assume that g is restricted with the p-mapping [p]. Without loss of

generality, according to Proposition 1.9, we can assume that [p]|zg
0̄
(g) = 0. This implies that

adx is nilpotent if and only if x is [p]-nilpotent for x ∈ g0̄. Let ρ : g −→ gl(u(g)) be the left

multiplication in the restricted enveloping superalgebra u(g). Then ρ is a faithful representation

of g, and x is [p]-nilpotent if and only if ρ(x) is nilpotnet. Consequently, adx is nilpotent if and

only if ρ(x) is nilpotent.

In general, according to Proposition 2.7, there exists a finite-dimensional p-envelope of g,

denoted by G. By the discussion above, G admits a finite-dimensional faithful representation

̺ : G −→ gl(V ) with the desired property. Since adg(x) is nilpotent if and only if adG(x) is

nilpotent for x ∈ g0̄. Thus, ρ := ̺|g satisfies the required property.

We have the following close connection between representations of a Lie superalgebra and

its p-envelope.

Theorem 2.9 Let G be a p-envelope of a finite-dimensional Lie superalgebra g and

ρ : g −→ gl(V ) be a representation of g. Then there exists a representation ρ̄ : G −→ gl(V )

extending ρ, and each g-submodule of V is a G-submodule.

Proof The statement obviously holds for G = ĝ, the universal p-envelope of g. In

general, by Definition 2.5, there exists an embedding ι : g →֒ G and a restricted homomorphism

f : ĝ −→ G. Then

G = ι(g)p = f(g)p = f(gp) = f(ĝ),

i.e., f is surjective. We can find a subspace W of ĝ containing g such that f |W : W −→ G is

an isomorphism (W is indeed a subalgebra). Then ρ̄ := ρ̃ ◦ f |−1
W is the desired representation

of G, where ρ̃ : ĝ −→ gl(V ) is the restriction of the representation U(g) −→ gl(V ) to ĝ.

According to Proposition 2.7, any finite-dimensional Lie superalgebra can be embedded

into a finite-dimensional restricted Lie superalgebra. In the next section, we will study

representations of restricted Lie superalgebras over a field of prime characteristic.
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3 Representations of restricted Lie superalgebras

In this section, we always assume that the base field F is algebraically closed of character-

istic p > 2, and g = g0̄ ⊕ g1̄ is a finite-dimensional restricted Lie superalgebra over F with the

p-mapping [p].

Let M be a simple g-module. Then M is finite-dimensional by Theorem 2.2. According

to Schur Lemma, ξ(x) = xp − x[p] acts on M by a scalar for any x ∈ g0̄. We write this scalar

as χ
M

(x)p for some χ
M

(x) ∈ F. The semilinearity of ξ implies that χ
M

∈ g∗0̄.

Theorem 3.1 The function χ
M

is called the p-character of M . More generally, if V is

a g-module and χ ∈ g∗0̄, then we say V has a p-character χ if

x · · ·x︸ ︷︷ ︸
ptimes

·v − x[p] · v = χ(x)pv, ∀x ∈ g0̄, v ∈ V.

In the following, when we write χ ∈ g∗, we always make convention that χ|g1̄
= 0. We

also refer χ ∈ g∗0̄ as a linear function on g with χ(g1̄) = 0.

Remark 3.2 If M has a p-character χ and M ′ has a p-character χ′, then M∗ has a

p-character −χ and M ⊗ M ′ has a p-character χ + χ′.

The g-modules with p-character 0 are called restricted modules. They correspond to Lie

superalgebra homomorphisms ρ : g −→ gl(V ) with ρ(x)p = ρ(x[p]), ∀x ∈ g0̄.

For χ ∈ g∗0̄, define Uχ(g) = U(g)/(xp−x[p]−χ(x)p | x ∈ g0̄), where (xp −x[p]−χ(x)p | x ∈

g0̄) denotes the ideal of U(g) generated by xp − x[p] − χ(x)p for x ∈ g0̄. Each Uχ(g) is called

a χ-reduced enveloping superalgebra of g. For χ = 0, U0(g) is just the restricted enveloping

superalgebra u(g). We have a one-to-one correspondence between g-modules with p-character

χ and Uχ(g)-modules. By PBW Theorem, we have

Proposition 3.3 Let χ ∈ g∗0̄. If {x1, · · · , xn} is a basis of g0̄ and {y1, · · · , ym} is a basis

of g1̄, then the superalgebra Uχ(g) has the following basis

{x̄a1

1 · · · x̄an
n ȳb1

1 · · · ȳbm
m | 0 6 ai < p, bj = 0, 1, 1 6 i 6 n, 1 6 j 6 m}.

In particular, dimFUχ(g) = 2dimFg1̄pdimFg0̄ .

The following result asserts that the composition factors of a finite-dimensional indecom-

posable g-module have the same p-character.

Proposition 3.4 Let g = g0̄⊕g1̄ be a finite-dimensional restricted Lie superalgebra over

an algebraically closed field F, and M a finite-dimensional indecomposable g-module. Then

there exists a unique χ ∈ g∗0̄ such that each simple composition factor of M has the p-character

χ.

Proof Let d = dimFM . Take a basis {x1, · · · , xn} of g0̄. Consider xp
1 − x

[p]
1 as a linear

transformation on M . We can decompose M as a direct sum of Z2-graded vector subspaces:

M = Mλ11
⊕ Mλ12

⊕ · · · ⊕ Mλ1s
,

where

Mλ1i
= {v ∈ M |(xp

1 − x
[p]
1 − λ1i)

dv = 0}, 1 6 i 6 s.
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Since xp
1 −x

[p]
1 ∈ Z(g), each Mλ1i

is a g-submodule. The indecomposability of M as a g-module

implies that s = 1, i.e., (xp
1 − x

[p]
1 − λ11)

dv = 0, ∀ v ∈ M.

Applying similar arguments, there exist unique λ21, · · · , λn1 ∈ F such that

(xp
i − x

[p]
i − λi1)

dv = 0, ∀ i (2 6 i 6 n), v ∈ M.

Let χ ∈ g∗0̄ with χ(xi)
p = λi1 for 1 6 i 6 n. Then

(xp − x[p] − χ(x)p)dv = 0, ∀x ∈ g0̄, v ∈ M.

Consequently, each simple composition factor of M admits the p-character χ.

As a direct consequence, we have

Corollary 3.5 Let g = g0̄ ⊕ g1̄ be a finite-dimensional restricted Lie superalgebra over

an algebraically closed field, and V a finite-dimensional g-module. Then V can be decomposed

into direct sum of submodules: V =
t⊕

i=1

Vi, where the composition factors of each Vi have

the same p-character χi ∈ g∗0̄ for 1 6 i 6 t. Those χi (1 6 i 6 t) are called the generalized

p-characters of V .

In the following, we always assume that I is an ideal of a finite-dimensional restricted Lie

superalgebra g = g0̄ ⊕ g1̄, and λ ∈ I∗0̄ with λ([I, I]) = 0. Let

gλ := {x ∈ g | λ([x, y]) = 0, ∀ y ∈ I},

which is a restricted subalgebra of g. Moreover, I is also an ideal of gλ.

Let {z1, · · · , zl, zl+1, · · · , zr} be a cobasis of gλ in g, where zi ∈ g0̄, zj ∈ g1̄ for 1 6 i 6

l < j 6 r. For a given χ ∈ g∗ (recall the convention that χ|g1̄
= 0) and a finite-dimensional

gλ-module M with the p-character χ|gλ and

x · v = λ(x)v, ∀x ∈ I, v ∈ M,

let

V := Indg

gλ(M, χ) = Uχ(g) ⊗Uχ(gλ) M

be the induced Uχ(g)-module. As a vector space, we have

V =
∑

04s4τ

Fzs ⊗ M,

where zs = zs1

1 · · · zsr
r for s = (s1, · · · , sr) ∈ Nr and

τ = (p − 1, · · · , p − 1︸ ︷︷ ︸
l times

, 1, · · · , 1︸ ︷︷ ︸
r−l times

).

For j ∈ N, set

V(j) =
∑

04s4τ

|s|6j

Fzs ⊗ M.
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We then have a filtration

0 ⊂ V(0) ⊂ V(1) ⊂ · · · ⊂ V((p−2)l+r) = V.

We need the following lemma for later use.

Lemma 3.6 Keep notations as above.

(1) There exist y1, · · · , yl ∈ I0̄ and yl+1, · · · , yr ∈ I1̄ such that λ([yi, zj ]) = δij for 1 6

i, j 6 r.

(2) For any v ∈ M , s ∈ Nr with s 4 τ , we have

(yi − λ(yi)) · z
s ⊗ v ≡ ±siz

s−εi ⊗ v (mod V|s|−2).

Proof (1) Set C =
r∑

i=1

Fzi. Define Bλ(z, y) = λ([z, y]) for z ∈ g and y ∈ I. We then get

a linear map

φ : C −→ I∗

x 7−→ Bλ(x,−).

Then φ is injective. Consequently, φ(z1), · · · , φ(zr) are linearly independent. Hence, there

exists y1, · · · , yr ∈ I such that

φ(zi)(yj) = λ([zi, yj ]) = δij , 1 6 i, j 6 r.

Since λ(g1̄) = 0, we can choose y
1
, · · · , y

l
∈ I0̄ and y

l+1
, · · · , yr ∈ I1̄.

(2) According to Lemma 1.3,

(yi − λ(yi))z
s =

∑

04t4s

±

(
s

t

)
zs−t{yi − λ(yi), z; t}.

For t 6= 0, we have {yi − λ(yi), z; t} = {yi, z; t} ∈ I, and {yi, z; t} ⊗ v ∈ 1 ⊗ M = V(0).

Consequently,

(yi − λ(yi)) · z
s ⊗ v ≡

∑

|t|61

±

(
s

t

)
zs−t{yi − λ(yi), z; t} ⊗ v

≡ ±zs(yi − λ(yi)) ⊗ v ±
r∑

j=1

sjz
s−εj [yi, zj] ⊗ v

≡ ±siz
s−εi ⊗ v (modV|s|−2).

With aid of Lemma 3.6, we get the following result describing the submodule structure of

the induced module Indg

gλ(M, χ).

Proposition 3.7 Let W be a g-submodule of Indg

gλ(M, χ). Then there exists a gλ-

submodule M ′ of M such that W ∩ (1 ⊗ M) = 1 ⊗ M ′ and W = Indg

gλ(M ′, χ).

Proof Let M ′ := {v ∈ M | 1 ⊗ v ∈ W}. Then M ′ is a gλ-submodule of M . Moreover,

W ∩ (1 ⊗ M) = 1 ⊗ M ′. For j ∈ N, set

W(j) :=
∑

04s4τ

|s|6j

Fzs ⊗ M ′ ⊂ Indg

gλ(M, χ).
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Then W(0) = W ∩ V(0). We will show that W ∩ V(j) ⊆ W(j) by induction on j. Let j > 1 and

suppose that W ∩ V(j−1) ⊆ W(j−1). Let v ∈ W ∩ V(j). Choose a cobasis {v1, · · · , vt} of M ′ in

M . Without loss of generality, we can assume that

v =

t∑

k=1

∑

s4τ

|s|6j

as,kz
s ⊗ vk,

where as,k ∈ F for s 4 τ, |s| 6 j and 1 6 k 6 t. According to Lemma 3.6, we have

(yi − λ(yi)) · v =

t∑

k=1

∑

|s|=j

as,ksiz
s−εi ⊗ vk (mod V(j−2)), 1 6 i 6 r.

Hence, (yi − λ(yi)) · v ∈ W ∩ V(j−1) ⊂ W(j−1). It follows from the definition of W(j−1) that

sias,k = 0 for |s| = j and 1 6 i 6 r, 1 6 k 6 t. Consequently, v = 0. This implies that

W ∩ V(j) ⊆ W(j). On the other hand, it is obvious that W(j) ⊆ W ∩ V(j), so that W ∩ V(j) =

W(j), ∀ j > 0. Hence, W = W ∩ V = W ∩ V(p−2)l+r = W(p−2)l+r = Indg

gλ(M ′, χ).

As a direct consequence, we have the following criterion on irreducibility of the induced

module Indg

gλ(M, χ).

Theorem 3.8 The induced Uχ(g)-module Indg

gλ(M, χ) is irreducible if and only if M is

irreducible.

Proof The sufficient implication is obvious. It suffices to show the necessary implication.

Suppose that M is irreducible. Let W be a g-submodule of Indg

gλ(M, χ). By Proposition 3.7,

there exists a gλ-submodule M ′ of M such that W = Indg

gλ(M ′, χ). Consequently, W = 0 or

Indg

gλ(M, χ) corresponding to M ′ = 0 or M ′ = M .

For a g-module V , set V λ := {v ∈ V | y · v = λ(y)v, ∀ y ∈ I}, which is a gλ-submodule of

V by a straightforward computation.

Theorem 3.9 Let g = g0̄ ⊕ g1̄ be a finite-dimensional restricted Lie superalgebra over

an algebraically closed field. Let V be an irreducible g-module, and I be an ideal of g. Then

the following statements hold.

(1) If V has a p-character χ ∈ g∗ and there is λ ∈ I∗ with λ([I, I]) = 0 and V λ 6= 0, then

V ∼= Indg

gλ(V λ, χ) and V λ is an irreducible gλ-module.

(2) If [I, I] operates nilpotently on V , then there exists χ ∈ g∗, λ ∈ I∗ with λ([I, I]) = 0

such that V ∼= Indg

gλ(V λ, χ).

Proof (1) Since V is irreducible, there exists χ ∈ g∗ such that V is a finite-dimensional

Uχ(g)-module, and we have the following surjective homomorphism

Ψ : Indg

gλ(V λ, χ) −→ V

u ⊗ v 7−→ u · v.

Note that KerΨ is a g-submodule of Indg

gλ(V λ, χ) which intersects 1 ⊗ V λ trivially. This

implies that KerΨ = 0 by Proposition 3.7. Hence, Ψ is an isomorphism and V λ is irreducible

by Theorem 3.8.
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(2) follows from Lemma 1.5 and the statement (1).

Remark 3.10 If I ⊳ g is an abelian ideal, then Theorem 3.9(2) applies.

Definition 3.11 Let V be a g-module and I ⊳ g be an ideal. We say λ ∈ I∗ a good

eigenvalue function for V if λ([I, I]) = 0 and V λ 6= 0.

Let χ ∈ g∗ and I ⊳ g. Let λ ∈ I∗ with λ([I, I]) = 0. We denote by Cχ,λ (resp. Dχ,λ) the

set of isomorphism classes of irreducible g (resp. gλ) modules with p-character χ (resp. χ|gλ)

and a good eigenvalue function λ.

Theorem 3.12 Let g = g0̄ ⊕ g1̄ be a finite-dimensional restricted Lie superalgebra over

an algebraically closed field. Let χ ∈ g∗. Let I ⊳ g be an ideal and λ ∈ I∗ with λ([I, I]) = 0.

Then the following map

Υ : Cχ,λ −→ Dχ,λ

V 7−→ V λ

is bijective.

Proof By Theorem 3.9, Υ is well-defined. Let

Γ : Dχ,λ −→ Cχ,λ

M 7−→ Indg

gλ(M, χ)

which is well-defined by Theorem 3.8.

Let M be an irreducible gλ-module with p-character χ|gλ and a good eigenvalue function

λ. Set V := Indg

gλ(M, χ). Then V is irreducible by Theorem 3.8. Moreover, 1 ⊗ M ⊆ V λ by

Lemma 1.5(3). Thanks to Theorem 3.9, V ∼= Indg

gλ(V λ, χ). Consequently, V λ = 1 ⊗ M by

comparing their dimensions, i.e., Υ ◦ Γ(M) ∼= M .

Conversely, let V be an irreducible g-module with p-character χ and a good eigenvalue

function λ. Then V ∼= Indg

gλ(V λ, χ) by Theorem 3.9, i.e., Γ ◦ Υ(V ) ∼= V . Therefore, Υ is

bijective, and Γ is its inverse map.

Example 3.13 Let g = g0̄ ⊕ g1̄ be the so-called Heisenberg Lie superalgebra with g0̄ =

span
F
{c}, g1̄ = span

F
{xi, yj | 1 6 i, j 6 n}, and the p-mapping [p] and the Lie bracket subject

to the following rules:

c[p] = c, [xi, yj] = δijc, [xi, xj ] = [yi, yj] = [c, xi] = [c, yj] = 0, ∀ 1 6 i, j 6 n.

Let 0 6= χ ∈ g∗0̄ and Λχ := {µ ∈ F | µp − µ = χ(c)p}. Let I = span
F
{c, xi | 1 6 i 6 n}

which is an abelian ideal of g. Let λ ∈ I∗ with λ(c) ∈ Λχ, and λ(xi) = 0, 1 6 i 6 n. Then

gλ = I by a direct computation. By Theorem 3.8 and Theorem 3.9, each simple g-module with

p-character χ and a good eigenvalue function λ is of the form Indg

gλ(Fvλ, χ), where Fvλ is the

one-dimensional I-module with c · vλ = λ(c)vλ and xi · vλ = 0, 1 6 i 6 n. Moreover, for any

χ ∈ g∗, since Uχ(I) is a local superalgebra, any simple Uχ(I)-module is one-dimensional, and

there are totally p simple modules Fvλ with c · vλ = λvλ and xi · vλ = 0 (1 6 i 6 n), where

λ ∈ Λχ. Hence, each simple Uχ(g)-module is of the form Indg

gλ(Fvλ, χ) with λ ∈ Λχ. Moreover,

Indg

gλ(Fvλ, χ) ∼= Indg

gµ(Fvµ, χ) if and only if λ = µ.
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