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0 Introduction

Recall that the finite-dimensional simple Lie superalgebras over the field of complex num-
bers were classified by Kac in the 1970s (cf.[1]). Furthermore, their representation theory was

developed extensively.
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In recent years, there has been an increasing interest in modular representation theory
of restricted Lie superalgebras. A systematical research on modular representation theory was
initiated and developed in [2-6] for Lie superalgebras of classical type, and in [7-15] for Lie
superalgebras of Cartan type, respectively. W. Wang and L. Zhaol®! proved a super version of
the celebrated Kac-Weisfeiler Property for the classical Lie superalgebras, which by definition
admit an even non-degenerate supersymmetric bilinear form and whose even subalgebras are
reductive. In [7-15], all simple restricted and some simple non-restricted modules of Lie super-
algebras of Cartan type were classified. Moreover, character formulas for these simple modules
were given.

In this paper, we study the modular representations of finite-dimensional Lie superalge-
bras. This research is largely motivated by [3, 16, 17]. We briefly introduce the structure of
this paper. We collect the general notations and elementary preliminaries on Lie (associative)
superalgebras in Section 1. Then Section 2 is devoted to developing general representation
theory for a finite-dimensional Lie superalgebra g = g5 @ g7 over an algebraically closed field
F of characteristic p > 2. We show that each simple g-module is of finite-dimensional, and
there exists an upper bound on the dimensions of simple modules. Moreover, g has a finite-
dimensional p-envelope which is a restricted Lie superalgebra. In some sense, this helps us to
reduce representations of finite-dimensional Lie superalgebras to those of restricted ones. We
then study irreducible representations of finite-dimensional restricted Lie superalgebras in Sec-
tion 3. We give a criterion for simplicity of an induced module of a finite-dimensional restricted
Lie superalgebra g, and obtain a bijection between the isomorphism classes of simple modules
of g and those of some restricted subalgebra (cf. Theorem 3.12). This reduces simple g-modules

to those simple modules of a certain restricted subalgebra.

1 Notations and preliminaries

In this paper, we always assume that the ground field F is algebraically closed and of prime
characteristic p > 2. We exclude the case p = 2, since in this case, Lie superalgebras coincide

with Zo-graded Lie algebras.
1.1 Basic definitions

A superspace is a Zs-graded vector space V = Vi @ Vi, in which we call elements in Vj
and V; even and odd, respectively. We usually write |v| € Zy for the parity (or degree) of
v € V, which is implicitely assumed to be Zs-homogeneous. A superalgebra is a Zs-graded
vector space 2 = A © A7 endowed with an algebra structure “” such that A, - Ag C Anyp
for any «, 3 € Zy. A superalgebra g = gg @ g7 with an algebra structure [—, —] is called a Lie
superalgebra if for any homogeneous elements x,y, z in g, the following conditions hold.

(i) [, 9] = —(=1)lIy, a);

(i) [z, [y, 21) = [l 9], 2] + (~ 1)1y, [, 2]).

Homomorphisms of superalgebras (Lie superalgebras) are those linear mappings which

reserve the Zo-grading and the superalgebra (Lie superalgebra) structure.
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For a Lie superalgebra g = gg @ g1, it follows from the definition that the even part gg
is a Lie algebra and the odd part g7 is a gg-module under the adjoint action. Let (2, -) be an
associative superalgebra, we denote [z, y] ==z -y — (—1)|x||y|y - for any homogeneous elements
z,y € A. Then (2, [—, —]) is a Lie superalgebra.

Example 1.1 Let V = V5 @ Vi be a Zs-graded vector space over F with dim V5 = m
and dim V5 = n. Then the algebra Endr(V) consisting of F-linear transformation of V is an

associative superalgebra with
Endr(V)o :={A € Endr(V) | A(V3) C Vayp, VB € Zo}, o € Zo.

Moreover, for any homogeneous elements A, B € Endr(V'), we define a new multiplication [—, —]
by

[A,B] := AB — (—1)AIIBIBA.

Then (Endp(V),[—,—]) is the so-called general linear Lie superalgebra, denoted by gl(V) =
gl(V)g @ gl(V)1 or gl(m|n) = gl(m|n)g & gl(m|n);. More precisely,

ai(mfn)y = {( . )
0 B
- {(2)

where Mat,; . ; denotes the set of all ¢ x j matrices for 4,5 € N\{0}.

Ae Matmxm,D S Matan} )

B € Mat,,x,,C € Matnxm} )

Definition 1.2 Let g = g5 @ g; be a Lie superalgebra. A Zs-graded vector space
V = V5 @ V; is called a g-module if there exists a Lie superalgebra homomorphism from g to
gl(V).

Let g = g5 @ g1 be a Lie superalgebra. Denote by U(g) the universal enveloping super-
algebra of g, which is the quotient of the tensor superalgebra T'(g) by the ideal generated by
[z,y] — zy 4+ (—=D)1#Wlyx for any x,y € g5 U gr. Set Z(g) = {u € U(g)s | uv = vu, Vv € U(g)}
which is called the even center of U(g).

In this paper, all Lie superalgebras are assumed to be finite-dimensional. By vector spaces,

subalgebras, ideals, submodules etc., we mean in the super sense unless otherwise stated.
1.2 Key lemmas

In this subsection, we present several lemmas for later use. Let A = 25 @ A; be a

superalgebra. For elements y, z1,--- , 2z, in A and
S = (Sla"' ,Sn),t = (tlv"' 7tn) € Nna
set

z:= (21, ,2n) € A", 2% =271 - 2o € A,
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and

{y,zst} o= [ [ [ [yl 2], 22], 22l s zn]y o 2] €2

t1times to times t, times

with the convention that {y,z;0} = y. Let

i S 2 Sy
=3 () =113
i=1 i=1 N "

K3

We define a partial order “<” on N" as follows.

t<sifandonlyift; <s;, VI <i<n.

Lemma 1.3 Assume 20 = 5 @ 207 is an associative superalgebra. Let y € 2z U 21,
21, y2m € Uy and zpmy1, 0,2, € A;. Let s = (s1,-+-,8,) € N* with s; € {0,1} for
m-+1<i7<n. Then

vt = Y :I:(:>z5t{y,z;t}. (1.1)

Proof It is trivial for s = 0. In the following, we assume s # 0. For any z € g, let
L., R, denote the left and right multiplications by x in 2, respectively. Then R, = L, — adxz,

and L, commutes with adz. We divide the proof into three cases.
Case 1 spy41 =8Smy2=---=8, =0.

In this case, we proceed by induction on m. The case m = 1 follows from the following

computation.

yzfl =R, 0R, 0---0R; (y)

s1 times

= (L., — ad2)" ()
= 2 o}t o)

0<t1<s1
S1 —t
- > (M)t bale ),
0Stissa ! t1 times
Assume that m > 1. Let y/ := yzi'---2."7",s' = (s1,--* ,8m_1). The induction hypothesis
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|
(]
H

m

I
= > i(i,) (’”) oty 5 (6 )}

tm

Hence, (1.1) holds in this case.
Case 2 sy =8y=---=8, =0.
In this case, we proceed by induction on n — m. If n —m = 1, then

Yzmi1 = Y, zmi1] + (1)1 z0 19

Sm+1

Hence, (1.1) holds in this case. Assume that n —m > 1. Put ¢ = yz,"7 - --

/
5 = (0707 7075m+178m+27"' 7Sn—l)'
———

m times

The induction hypothesis yields

(¢
= 3 (S s S (5)F st
(

#S w()ar  mt) it)

Sn—1

z,"' and

o<t/ s’ 0<t/<s’
S 7 SI gt
= >+ t,>s SIIANEEDY i(t,)zs Y anly.z (t,0))
oxt/<gs’ ot/ s’
= :|:<:>z5t{y,z;t}.
0<t<s

Hence, (1.1) holds in this case.

Case 3 (s1, " ,8m) # 0 and (spmt1,- -, 8n) £ 0.

Let 8" = (s1,-+* ,8m,0,--+,0), 8" =(0,---,0, Synt1, " ,8n). It follows from Case 1 and
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Case 2 that
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Hence, (1.1) holds in this case.

In conclusion, we finish the proof by the three cases above.

We have the following super version of Engel’s Theorem in Lie algebras.

Lemma 1.4 Let V = V5@ V5 be a finite-dimensional Zs-graded vector space and g C
gl(V) be a Lie super subalgebra. Moreover, assume that g consists of nilpotent transformations.
Then there exists a nonzero element v € V5 U V; such that xv = 0 for any = € g.

Proof Let m = dimg;. We proceed by induction on m. For the case m = 0, the assertion
follows from Engel’s Theorem (see [18]). Assume that m = 1 and g; = spang{y}. Since y is
nilpotent, Wy := {v € V | yv = 0} is a nonzero Zs-graded subspace. Moreover, it is easy to
check that W is a gg-submodule. By Engel’s Theorem again, Wy := {v € Wy |zv =0, Va €
g5} is a nonzero Zs-graded subspace. Consequently, any nonzero homogeneous vector v in Wa
satisfies the desired requirement.

Assume that n > 1 and the assertion holds for any m < n. We will show that it also holds

for m = n. For that, regard g as a gg-module via adjoint action. Since
(adz)?" (y) = 2" y —ya? =0,Va € g5,y € g7,7 > 0,

it follows that dimg[gg, g7] < dimp g7 = n by applying Engel’s Theorem to gg and its adjoint
module g7. This implies that the odd part of the derived algebra [g, g] has dimension strictly
less than n. According to the induction hypothesis, W3 := {v € V |2v =0, Vz € [g,g]} is a
nonzero Zs-graded subspace.

Let {x1, -+ ,2;} be a homogeneous basis of g. Since x; is nilpotent, and W3 is invariant
under the action of z1, it follows that W5* := {v € W3 | z1v = 0} is a nonzero Za-graded
subspace. For 2 < i <[, define W3 % := {v € W3 | ;0 = 0} inductively. These are
nonzero Zs-graded subspaces by a similar argument. Then any nonzero homogeneous vector v
in W3 " satisfies the requirement of the assertion.

As a consequence of Lemma 1.4, we get the following preliminary result on representations
of Lie superalgebras.

Lemma 1.5 Let V = V5 @ V; be a Zy-graded vector space and g C L C gl(V) be Lie
super subalgebras. Then the following statements hold.
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(1) If [g, g] consists of nilpotent transformations and F contains all eigenvalues of elements
in g, then there exists nonzero v € V53U V5 and A € g* such that v = A(z)v, Va € g.

(2) Let A : g — F be an eigenvalue function, i.e., x — A\(x) idy is nilpotent for any x € g.
Suppose that A(z) =0 for any « € [g,g]. Then X is linear.

(3) Keep assumptions as in (1). Moreover, assume that g is an ideal of L and V is an
irreducible L-module. Then [g,g] = 0, and any = € g has a unique eigenvalue A(z) on V, and
A: g — Fis linear.

Proof (1) According to Lemma 1.4,

Wy={veV]azv=0,Vzec|gg]} #0.
Take any = € g7 and y, z € gg U g1, then
ly, z]zv = [[y, 2], z]v + (—1)‘y‘+lzlx[y, zJv = 0.

Hence, W7 is invariant under the action of g7. Moreover, since

1
v = 5[1:,:[:]’0 = 0 and xyv = —yzv, Vz,y € g1,v € W1,

it follows that
Wo:={veW;|zv=0,Vzegi}#0.

Furthermore, W5 is a gg-submodule with xyw = yzw, Yz,y € g5, w € Wa, so that we can find
a nonzero homogeneous element v in Wy and A € g* such that zv = A(z)v, Vz € g.

(2) By (1), there exists v € V5 UVj such that zv = A(x)v. Since the left hand side is linear
in z, so is the right hand side.

(3) By (1), there exists v € V5 U V7 such that zv = 0, Yz € [g,g]. Since V is an irreducible
L-module, V = U(L)v. Consequently, [g,g] acts trivially on V, since g is an ideal of L. This
means that [g,g] = 0. Let = € gg and A(z) be an eigenvalue of x, then [2P, L] = (adz)?L C
[9,9] =0,and V := {v € V | aPv = A(z)Pv} is a nonzero L-submodule. The irreducibility of V'
as an L-module implies that V coincides with V, i.e., x — A(x) idy is nilpotent. Hence, \(x) is

the unique eigenvalue of . On the other hand, for any z € g1,

1
* = 5lw,2l € o, 0] = 0.

This implies that any element « € g7 is nilpotent, and 0 is the unique eigenvalue. The assertion

that A is linear follows from (2).
1.3 Restricted Lie superalgebras

The following definition is a generalization of the notion of restricted Lie algebras'"1! to
the case of Lie superalgebras.
Definition 1.62°) A Lie superalgebra g = g5 @ g7 is called a restricted one if gg is

a restricted Lie algebra and gj is a restricted gg-module under the adjoint action. This is
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equivalent to saying that there exists a so-called p-mapping [p] on gg such that the following
properties hold:
(i) (adz)? = ad(zP)) for all z € gg;

i) (az)l?) = aPzP! for alla € IF z € gp;

i=1

(
(i) (z +y)P) = 2l 4yl 4 E si(z,y) for all z,y € gy, where those s;(z,y) € g5 (1 < i <
p — 1) are defined via the following formula:

p—1
ad(tz + y)P~(z) = isi(x,y)t" ! for all 2,y € gg.

i=1

Here ¢ is an indeterminate.

Remark 1.7 Let (g, [p]) be a restricted Lie superalgebra. Set &(x) := 2 — P! € U(g) for
x € gg. According to Definition 1.6(i), &(z) € Z(g) for any = € gg. Moreover, £ : g5 — Z(g)
is p-semilinear, i.e., {(ax + by) = aP&(x) + bPE(y), Y,y € g5,a,b € F.

Example 1.8 Let g = gl(m|n) be the general linear Lie superalgebra. Let

[p]: 86— 9o

T — aP,

P e i i i i
where z T-x x. Then (g,[p]) is a restricted Lie superalgebra. More generally, Lie

ptimes
superalgebras of algebraic supergroups are restricted Lie superalgebras (see [2]).

Proposition 1.9 Let g be a restricted subalgebra of a restricted Lie superalgebra (G, [p]).
Let [p]’ : g5 — g5 be a mapping. Then the following statements are equivalent.

(1) [p]" is a p-mapping on g.

(2) There exists a p-semilinear mapping f : gg — 3¢, (9) such that [p]" = [p]|g, + f, where

e, (g) = {‘T € Gp | [xvy] =0,Vye g}
Proof (1) = (2). Set

[+ 80— Gp

o gl plp)
Since
[f(2),y] = [a — 2Pl y] = (adz)? (y) — (adz)?(y) = 0, Y& € g,y € g,

[ actually maps gg into 3. (g). For any x,y € g5 and a,b € F, we have

p—1 p—1
flaz +by) = a'al 4yl 4 3 si(aw,by) — (2l 4 b7y 37 si(ax, by) )
i=1 =1

=l f(z) + VP f(y).

Consequently, f is p-semilinear.
(2) = (1). We need to show that the three conditions in Definition 1.6 hold for [p]’.
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(i) ad(zl?) = ad(z”) + f(z)) = ad(zlP)) = (adz)?, V& € gg.
(ii) (A2)P) = (Az)Pl + f(Ax) = NalP) 4 €\ f(x) = Nzl Ve gy, A € F.
(iii) For any z,y € gg,

p—1
@+ =@+y + fle+y) =2 + f@) +yP + f) + D silz,y)
=1
p—1
— x[ﬁ”] + y[ZD] + Z Si(I, y)
=1

The proof is completed.

Let (g,[p]) be a finite-dimensional restricted Lie superalgebra over F. Let Zy(g) be the
F-algebra generated by z* — z[P! for 2 € gg. Let Iy(g) be the ideal in U(g) generated by z? — z[?!
for x € gg, and u(g) = U(g)/Io(g) which is usually called the restricted enveloping superalgebra.
Suppose that {x1, - ,2z,} is a basis of gg, and {y1,- - , ym } is a basis of g7. It follows from the
semilinearity of £ that Zy(g) is generated by &£(z1), - ,&(x,). Moreover, by PBW Theorem,
we have

Proposition 1.10 Keep notations as above, then the following statements hold.

(1) The elements &(x1), - -+ ,&(zy) are algebraically independent generators for Zy(g), i.e.,
Zo(g) =F[&(z1), - ,&(xy)] is a polynomial algebra of n indeterminates.

(2) The universal enveloping superalgebra U(g) is free over Zy(g) with basis

{aftaprylt g |0<ai <p—1,b;=0,1,1<i <n, 1 < j <m}.

n

(3) The restricted enveloping superalgebra u(g) is finite-dimensional, and has a basis

{zg - wgtghn |0<a; <p—1,0;=0,1,1<i<n,1<j<m}.

2 General representation theory

In this section, we always assume that g = gg @ g7 is a finite-dimensional Lie superalgebra
over an algebraically closed field of characteristic p > 2. We will show that each simple g-
module is finite-dimensional, and the dimensions of simple g-modules have an upper bound.
Moreover, each finite-dimensional Lie superalgebra can be embedded into a finite-dimensional
restricted Lie superalgebra.

Proposition 2.1 Let g = gg ® gi be a finite-dimensional Lie superalgebra over an
algebraically closed field F of characteristic p > 2. Then the universal enveloping superalgebra
U(g) is a finitely generated Z(g)-module, and Z(g) is a finitely generated F-algebra.

Proof (1) Let {x1,---,2,} be a basis of g5 and {y1, - ,ym} be a basis of g;. Consider

{(adz;)” |1<i<n,j=0,1,-1}

as elements in Endp(g). Since g is finite-dimensional, there exists d; € N (1 < i < n) such that

d

(adz;)?P" = Z aij(adxi)pj, V1i<i<n.
0<j<d;
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Consequently, z; := xfdi - > aijxfj € Z(g),1 < i < n. Let O be the subalgebra of Z(g)
0<ji<d;
generated by z;,1 < ¢ < n. By PBW Theorem, O is a polynomial algebra of n indeterminates,

and as an O-module, U(g) is spanned by
{aft - alryl oyl 10 <ie <p™,je=0,1,1<k<n,1<s<m}. (2.1)

In particular, as a Z(g)-module, U(g) is spanned by those elements in (2.1).

(2) By (1), U(g) is a Noetherian O-module. Hence, as a submodule, Z(g) is also a
Noetherian O-module. Consequently, Z(g) is a finitely generated O-module. Since O is finitely
generated, it follows that Z(g) is also finitely generated.

Theorem 2.2 Let g = g5 @ g7 be a finite-dimensional Lie superalgebra over an alge-
braically closed field F of characteristic p > 2. Then the following statements hold.

(1) Each irreducible representation of g is finite-dimensional.

(2) There exists a positive integer M (g) such that every irreducible representation of g has
dimension less than M(g).

Proof By Proposition 2.1, we can assume that U(g) = ET: Z(g)u;. Let V be a simple

i=1

g-module. Take a nonzero homogeneous element v in V', then
V=U(gv= Z Z(g)u;v.
i=1

Hence, the module V is finitely generated over Z(g). Since Z(g) is Noetherian, there exists a
maximal Z(g)-submodule V' C V. Consequently, V/V' = Z(g)/m as Z(g)-modules for some
maximal ideal m of Z(g). Hence, mV C V' G V. Since mV is a U(g)-submodule of V and V
is irreducible, it follows that mV = 0. Therefore, Z(g) acts on V as Z(g)/m = F. Part (1) is
proved. Moreover, by the discussion above, r + 1 is an upper bound M (g).

Remark 2.3 When g is a restricted Lie superalgebra, the results in Theorem 2.2 were
asserted in [3].

Example 2.4 Let g = g5 @ g7 be a subalgebra of gl(2|1) with g5 = spang{h, 2z}, g1 =
spang{y}, where

1 01 0 00 1
h=1] 0 z=10 0 0 ],y=| 0 0 0
0 00 0 00 0
Note that
[h,x] =z, [h,y] =y, [v,y] = [y,y] =0
and

plpl — h, 2P = 0.
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Hence, 2P and h? — h are contained in Z(g). Consequently,

0<i,j<p
0<k<1
It is easy to check that
ha' = x'(h +1i), oh?! = (h — 1)z, V1 <d,5 <p— 1. (2.2)

Let M = My @ Mj be an irreducible g-module. By Theorem 2.2, M is finite-dimensional and
aP acts as a scalar on M, saying a?. Hence, (x — a)? - M = (a? —a?)- M = 0.

Casel a=0.

Let g’ = spang{z,y}. Then g’ is a subalgebra of g. According to Lemma 1.4, M’ := {m €
M |z-m=0,Vz € g} is a nonzero Zy-graded subspace. Moreover, M’ is a g-submodule of
M, so that M = M’ by the irreducibility of M as a g-module. Hence, M is a simple module
for the commutative Lie algebra g/g’ = Fh. Therefore, dimp M = 1 and h acts as a scalar on
M, while z,y act trivially. Conversely, given any scalar b € F, we get a one-dimensional simple
g-module, denoted by My, in which h acts as multiplication by b, and g’ acts trivially.

Case 2 a#0.

In this case, there exists 0 # vy € My U M7 such that = - vg = avg. Since M is finite-
dimensional and h? — h € Z(g), there exists b € F such that

(W —h)-v=h"-v—h-v=">0v YvelM

Set v; := h' - v for 1 <i < p. Then v, = bPvg + v1. By (2.2), for 1 <i < p— 1, we have

v = (h— 1)iavp = aio(_w‘ (;) . (2.3)

It follows that M" := spang{vg,v1,---,vp—1} is stable under x and h. We claim that
Vg, -+ ,Vp—1 are linearly independent. Suppose the contrary, then there exists some j < p —1
such that M" = spang{vg,v1,---,v;}. It follows from (2.3) that tr(z|a~) = ( + 1)a. On
the other hand, since [h,z] = z, we have tr(z|p) = 0. This implies that (j + 1)a = 0, i.e.,
j+1=0 (mod p), a contradiction. Therefore, vy, v1,--- ,vp—1 are linearly independent. More-
over, M" is an irreducible gg-submodule, since up to scalars, vy is the unique eigenvector of x

on M"”. We have the following natural epimorphism of g-modules:
™ U(g) ®U(g()) M/I E— Mu

which is surjective by the simplicity of M as a g-module. It is easy to check that U(g) @ (g;) M"
has a unique maximal submodule y ® M". Consequently, M = U(g) Qg5 M"/y ® M", and
dimp M = p. Conversely, given a,b € F with a # 0, we have a simple g-module M of dimension
p with basis vg,--- ,v,—1 such that y acts trivially, and the actions of h and z are given as

above. We denote this simple g-module by M, p).
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In conclusion, {My, M) | a € F*,b € F} exhausts all non-isomorphic irreducible g-
modules.

In the following, we study the connection of restricted and ordinary Lie superalgebras.

Definition 2.5 Let g = g @ g7 be a Lie superalgebra.

(1) A triple (G, [p], ) consisting of a restricted Lie superalgebra (G, [p]) and a Lie super-
algebra homomorphism ¢ : g — G is called a p-envelope of g if ¢ is injective and G = ¢(g),,
where «(g), denotes the restricted subalgebra generated by ¢(g).

(2) A p-envelope (G,[p],¢) of g is called universal, if it satisfies the following universal
property: For any restricted Lie superalgebra (H,[p]’) and any homomorphism f : g — H,
there exists a unique restricted homomorphism g : (G, [p]) — (H, [p]’) such that go¢ = f.

The following result asserts that the universal p-envelope of a Lie superalgebra always
exists and is unique.

Proposition 2.6 Every Lie superalgebra g = g5 & g7 has a unique universal p-envelope

©>

Proof Let g be the restricted subalgebra of U(g) generated by g. Let H be a restricted
Lie superalgebra and f : g — H be a homomorphism. Recall that H canonically embedded
into w(H). The universal property of U(g) gives rise to an associative homomorphism f :
U(g) — u(H) and g C f~1(H). Let 2 € gg C f~*(Hp), then f(z) € Hy and f(aP) = f(z)P =
f(x)Pl € H. So, 27 € f~'(H). Therefore, f : § — H is an extension of f. Since g is
generated by g and the p-th powers, this extension is unique. The uniqueness of g follows from
the definition of the universal p-envelope.

Proposition 2.7 Let g = g5 @ g1 be a Lie superalgebra. Then the following statements
hold.

(1) If g is finite-dimensional, and (g, [p],¢) is a p-envelope of g, then g/C(g) is finite-
dimensional.

(2) If g is finite-dimensional, then g possesses a finite-dimensional p-envelope.

(3) Each homomorphism of Lie superalgebras f : g — b can be extended to a restricted
homomorphism f: g— E Moreover, if f is injective or surjective, so is f

Proof (1) Recall that g = t(g),, the restricted subalgebra generated by ¢(g). Hence,
[8,8] C ¢(g), and ¢(g) is an ideal of g. Let

¢ : g — Derr(u(g))
x> adz|,(q)-
It is easy to check that Kery = 35(¢(g)) = 35(8) = C(g). Consequently,
dimpg/C(g) < dimgDerp(i(g)) < dimpEndp(i(g)) = (dimpg)? < +o0.

(2) Choose a Zs-graded subspace V' C C(g) such that C(g) = V @ (C(g) Ng). Then
by Proposition 1.9, we can endow a [p]-structure on g/V which contains g isomorphically.

Moreover,

dlm]pﬁ/V = dlmFﬁ/C(ﬁ) + dlmFC(ﬁ) nNg < +oo.
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Then the restricted subalgebra generated by g in g/V is the desired p-envelope of g.
(3) Since g — h — 6, the universal property of g yields the existence of fsuch that the

following diagram is commutative.

If f is onto, then f(ﬁ) > flg)p = by = b, ie., f(ﬁ) =h. If f is injective, it extends to an
injective homomorphism U(g) < U(h). Hence, its restriction f to § is injective.

The following result is a superversion of Iwasawa’s Theorem in the case of Lie algebras.

Theorem 2.8 Let g = gy ® g7 be a finite-dimensional Lie superalgebra. Then g admits
a finite-dimensional faithful representation p. Moreover, assume x € gg, then p(z) is nilpotent
if and only if adx is nilpotent.

Proof We first assume that g is restricted with the p-mapping [p]. Without loss of
generality, according to Proposition 1.9, we can assume that [p]|3%(g) = 0. This implies that
ad z is nilpotent if and only if « is [p]-nilpotent for = € g5. Let p: g — gl(u(g)) be the left
multiplication in the restricted enveloping superalgebra u(g). Then p is a faithful representation
of g, and z is [p]-nilpotent if and only if p(z) is nilpotnet. Consequently, adz is nilpotent if and
only if p(x) is nilpotent.

In general, according to Proposition 2.7, there exists a finite-dimensional p-envelope of g,
denoted by G. By the discussion above, G admits a finite-dimensional faithful representation
0: G — gl(V) with the desired property. Since adg(z) is nilpotent if and only if adg(x) is
nilpotent for « € gg. Thus, p := g|4 satisfies the required property.

We have the following close connection between representations of a Lie superalgebra and
its p-envelope.

Theorem 2.9 Let G be a p-envelope of a finite-dimensional Lie superalgebra g and
p: g — gl(V) be a representation of g. Then there exists a representation p : G — gl(V)
extending p, and each g-submodule of V' is a G-submodule.

Proof The statement obviously holds for G = §g, the universal p-envelope of g. In
general, by Definition 2.5, there exists an embedding ¢ : g <— G and a restricted homomorphism
f: 39— G. Then

G=ug)p=fl8)p=flgp) = f(9),

i.e., f is surjective. We can find a subspace W of g containing g such that fly : W — G is
an isomorphism (W is indeed a subalgebra). Then p := jo f|;; is the desired representation
of G, where p: g — gl(V) is the restriction of the representation U(g) — gl(V) to g.
According to Proposition 2.7, any finite-dimensional Lie superalgebra can be embedded
into a finite-dimensional restricted Lie superalgebra. In the next section, we will study

representations of restricted Lie superalgebras over a field of prime characteristic.
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3 Representations of restricted Lie superalgebras

In this section, we always assume that the base field F is algebraically closed of character-
istic p > 2, and g = gg @ g7 is a finite-dimensional restricted Lie superalgebra over F with the
p-mapping [p].

Let M be a simple g-module. Then M is finite-dimensional by Theorem 2.2. According
to Schur Lemma, £(z) = 2P — z[?! acts on M by a scalar for any = € gg. We write this scalar
as X, (z)?P for some x,,(v) € F. The semilinearity of £ implies that x,, € g?.

Theorem 3.1 The function y,, is called the p-character of M. More generally, if V' is
a g-module and x € g7, then we say V has a p-character x if

Loz = aPl .y = x(z)Pv, Vi € gg,v € V.
ptimes

In the following, when we write x € g*, we always make convention that x|s; = 0. We
also refer x € g5 as a linear function on g with x(g1) = 0.

Remark 3.2 If M has a p-character y and M’ has a p-character x’, then M* has a
p-character —x and M ® M’ has a p-character x + x’.

The g-modules with p-character 0 are called restricted modules. They correspond to Lie
superalgebra homomorphisms p : g — gl(V) with p(z)? = p(z)), Va € gg.

For x € g5, define Uy (g) = U(g)/(a? — aP) = x(z)? | z € gg), where (2 —alP) — x(z)? | z €
gg) denotes the ideal of U(g) generated by 2P — xlP) — x(z)? for 2 € gg. Each U,(g) is called
a x-reduced enveloping superalgebra of g. For x = 0, Up(g) is just the restricted enveloping
superalgebra u(g). We have a one-to-one correspondence between g-modules with p-character
x and U, (g)-modules. By PBW Theorem, we have

Proposition 3.3 Let x € g5. If {1, ,2,} is a basis of g5 and {y1,- -+ ,ym} is a basis
of g1, then the superalgebra U, (g) has the following basis

{FP gyt g | 0<ag <p,b;=0,1,1<i <n, 1< j<ml)

In particular, dimpU, (g) = 2dim=o1 pdimzgo,

The following result asserts that the composition factors of a finite-dimensional indecom-
posable g-module have the same p-character.

Proposition 3.4 Let g = gz g7 be a finite-dimensional restricted Lie superalgebra over
an algebraically closed field F, and M a finite-dimensional indecomposable g-module. Then
there exists a unique x € gj such that each simple composition factor of M has the p-character
X-

Proof Let d = dimpM. Take a basis {z1, -+ ,z,} of gg. Consider 2} — x[lp] as a linear

transformation on M. We can decompose M as a direct sum of Zs-graded vector subspaces:
M = My, & Mx,, & @& My,,,
where

My, :{U€M|(:vlf—:v[1p] M) =0}, 1<i<s.
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Since z¥ — :r[lp lez (g), each My,, is a g-submodule. The indecomposability of M as a g-module

implies that s = 1, i.e., (2] — a:[lp] —A1)% =0,Vv e M.
Applying similar arguments, there exist unique Aoy, -+, A1 € F such that

(ab — P M) =0,Vi(2<i<n),ve M.

Let x € g§ with x(z;)? = Ai1 for 1 <4 < n. Then
(a? — 2] — x(x)P) =0,V € g, v € M.

Consequently, each simple composition factor of M admits the p-character x.
As a direct consequence, we have
Corollary 3.5 Let g = gg @ g1 be a finite-dimensional restricted Lie superalgebra over

an algebraically closed field, and V a finite-dimensional g-module. Then V' can be decomposed
t
into direct sum of submodules: V = @ V;, where the composition factors of each V; have

i=1
the same p-character x; € gj for 1 <4 < t. Those x; (1 < i < t) are called the generalized

p-characters of V.
In the following, we always assume that I is an ideal of a finite-dimensional restricted Lie
superalgebra g = gy © g1, and A € I7 with A([/,I]) = 0. Let

g ={zecg|A[z,y) =0,Vyell}

which is a restricted subalgebra of g. Moreover, I is also an ideal of g*.
Let {21, , 21,2141, , 2} be a cobasis of g* in g, where 2; € gg, z; € g7 for 1 < i <
l < j <r. Foragiven x € g* (recall the convention that x|g; = 0) and a finite-dimensional

g*-module M with the p-character x| g» and
x-v=Nax)w, Ve el,ve M,
let
V= IndgA(M, X) = Ux(9) ®u, (g3 M
be the induced U, (g)-module. As a vector space, we have

V= > FroM,

oxs<xX7
where z% = 27 -+ - 25" for s = (s1,- -+ ,8,) € N" and
T:(p_la"'vp_lvla"'al)'
—_—— — ——
ltimes r—Itimes

For j € N, set

V=Y FzreM.
oxsxT
sI<j
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We then have a filtration
0C Vo) € Vi €+ CVip-214m) = V-

We need the following lemma for later use.

Lemma 3.6 Keep notations as above.

(1) There exist y1, -,y € Ig and yj+1,--- ,yr € I1 such that A([y;, z;]) = d;; for 1 <
1, <1

(2) For any v € M, s € N" with s < 7, we have

(i = Awi)) - 2° @v =+£52°"° ®v (mod Vig|_z).

Proof (1) Set C' = > Fz;. Define Bx(z,y) = A([z,y]) for z € g and y € I. We then get

=1
a linear map
¢o:C—1TI"
x +— By(x,—).
Then ¢ is injective. Consequently, ¢(z1),---,¢(z,) are linearly independent. Hence, there
exists y1,- -,y € I such that

B(z:)(y;) = M[zi, y5]) = 0ij, 1 < 4,5 <7,

Since A(gy) = 0, we can choose y,,---,y, € [y and y,, ., -,y € I5.
(2) According to Lemma 1.3,

S _
(i = Aya))z® = ) ﬂE(t)ZS yi — Awi), z: £}
0<t<s
For t # 0, we have {y; — AM(v:),2;t} = {yi,z;t} € I, and {y;,z;t} ® v € 1@ M = V).
Consequently,

(yi —Ayi)) 22 @v= Z + (:) 2y — Myi), z:t} @0

[t]<1

= 2% (y — Ap) @ v Y 857 i, ] @ v
j=1

= 45,2° % ® v (modVjg_2).

With aid of Lemma 3.6, we get the following result describing the submodule structure of
the induced module Indg, (M, ).

Proposition 3.7 Let W be a g-submodule of Indgk(M, X). Then there exists a g*-
submodule M’ of M such that WN(1®@M)=1® M’ and W = IndgA(M',x).

Proof Let M':={ve M |1®veE W}. Then M'is a g*-submodule of M. Moreover,
WN(leM)=1® M'. ForjeN, set

W) = Y Fz°@ M' CInd, (M, ).
osxX7
IsI<i
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Then Wigy = W N V(). We will show that W NV{;) € W(;) by induction on j. Let j > 1 and
suppose that W N V(;_1) € W(;_1). Let v € W N V(;y. Choose a cobasis {vy,---,v:} of M’ in

M. Without loss of generality, we can assume that

t
’UZE E as 12° @ Vg,

N

where ag, € F for s < 7,|s| < j and 1 < k < ¢. According to Lemma 3.6, we have

t
(yi — Myi)) -v= Z Z s k5:2° T @ vy (mod Vij_q)), 1 <i <
k=1|s|=j
Hence, (y; — A(yi)) -v € WN V1) C W;_qy. It follows from the definition of W(;_;y that
siasy = 0 for |s| = jand 1 < i < r1 < k <t Consequently, v = 0. This implies that
wn V(j) C W(j). On the other hand, it is obvious that W(j) cCwn V(j), so that W N V(j) =
Wiy, Vi >0. Hence, W =W NV =W N Vip_oytr = Wp_oyipr = IndﬁA(M’, X)-

As a direct consequence, we have the following criterion on irreducibility of the induced
module Indg, (M, ).

Theorem 3.8 The induced U, (g)-module Indg » (M, x) is irreducible if and only if M is
irreducible.

Proof The sufficient implication is obvious. It suffices to show the necessary implication.
Suppose that M is irreducible. Let W be a g-submodule of IndﬁA (M, x). By Proposition 3.7,
there exists a g*-submodule M’ of M such that W = IndgA(M’,X). Consequently, W = 0 or
IndgA (M, x) corresponding to M’ =0 or M' = M.

For a g-module V, set V* := {v € V | y-v = A(y)v, Yy € I}, which is a g*-submodule of
V by a straightforward computation.

Theorem 3.9 Let g = gg @ g1 be a finite-dimensional restricted Lie superalgebra over
an algebraically closed field. Let V' be an irreducible g-module, and I be an ideal of g. Then
the following statements hold.

(1) If V has a p-character y € g* and there is A\ € I* with A([1,I]) = 0 and V* # 0, then
V= Indﬁk (VA x) and V* is an irreducible g*-module.

(2) If [I, I] operates nilpotently on V, then there exists x € g*, A € I* with A([I,I]) =0
such that V' 2 Indg, (VA x).

Proof (1) Since V is irreducible, there exists x € g* such that V is a finite-dimensional

U, (g)-module, and we have the following surjective homomorphism

U Indd, (VA x) — V.
URQ U U,
Note that KerV is a g-submodule of Indg A(VA, x) which intersects 1 ® V* trivially. This

implies that KerW = 0 by Proposition 3.7. Hence, ¥ is an isomorphism and V* is irreducible
by Theorem 3.8.
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(2) follows from Lemma 1.5 and the statement (1).

Remark 3.10 If I < g is an abelian ideal, then Theorem 3.9(2) applies.

Definition 3.11 Let V be a g-module and I < g be an ideal. We say A € I* a good
eigenvalue function for V if A([I,1]) = 0 and V* # 0.

Let x € g* and I <ag. Let A € I* with A([Z,I]) = 0. We denote by €, » (resp. Dy,) the
set of isomorphism classes of irreducible g (resp. g*) modules with p-character x (resp. x| o)
and a good eigenvalue function A.

Theorem 3.12 Let g = gg © g7 be a finite-dimensional restricted Lie superalgebra over
an algebraically closed field. Let x € g*. Let I <g be an ideal and A € I'* with A([I,I]) = 0.
Then the following map

T:C A — Dy
Vi— Vv

is bijective.
Proof By Theorem 3.9, T is well-defined. Let

I: ®X7>\ I Q:Xy)\

M +— Indg, (M, x)

which is well-defined by Theorem 3.8.

Let M be an irreducible g*-module with p-character | g and a good eigenvalue function
A. Set V= IndgA(M, X). Then V is irreducible by Theorem 3.8. Moreover, 1 ® M C V* by
Lemma 1.5(3). Thanks to Theorem 3.9, V 22 IndgA(VA,X). Consequently, V* = 1 ® M by
comparing their dimensions, i.e., T o I'(M) = M.

Conversely, let V' be an irreducible g-module with p-character y and a good eigenvalue
function A\. Then V = IndEX(VA,X) by Theorem 3.9, ie., I'o T(V) = V. Therefore, T is
bijective, and I is its inverse map.

Example 3.13 Let g = g5 & g7 be the so-called Heisenberg Lie superalgebra with g5 =
spang{c}, g1 = spanp{x;,y; | 1 <4,j < n}, and the p-mapping [p] and the Lie bracket subject

to the following rules:
C[p] = C, [I’Lvyj] = 6ijca ['rzvxj] = [yl;yj] = [Cv .IZ] = [Ca yJ] = Oa V1 g Zv.] g n.

Let 0 # x € g and Ay := {u € F | P — p = x(c)’}. Let I = spang{c,z; | 1 <i < n}
which is an abelian ideal of g. Let A € I* with A(c) € A,, and A(z;) = 0,1 < ¢ < n. Then
g* = I by a direct computation. By Theorem 3.8 and Theorem 3.9, each simple g-module with
p-character x and a good eigenvalue function A is of the form Indg » (Fuy, x), where Fuy, is the
one-dimensional I-module with ¢ - vy = A(c)vy and z; - vy = 0, 1 < i < n. Moreover, for any
X € g%, since U, (I) is a local superalgebra, any simple U, (I)-module is one-dimensional, and
there are totally p simple modules Fvy with ¢ - vy = vy and z; - vy = 0 (1 < @ < n), where
A € A. Hence, each simple U, (g)-module is of the form IndgA (Fuy, x) with A € A,. Moreover,
Ind§A (Foy, x) = Indg, (Fvy, x) if and only if A = .
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