文章快速检索     高级检索
  华东师范大学学报(自然科学版)  2017 Issue (4): 41-51  DOI: 10.3969/j.issn.1000-5641.2017.04.004
0

引用本文  

徐会作. Sándor-Yang平均关于一些二元平均凸组合的确界[J]. 华东师范大学学报(自然科学版), 2017, (4): 41-51. DOI: 10.3969/j.issn.1000-5641.2017.04.004.
XU Hui-zuo. Sharp bounds for Sándor-Yang means in terms of some bivariate means[J]. Journal of East China Normal University (Natural Science), 2017, (4): 41-51. DOI: 10.3969/j.issn.1000-5641.2017.04.004.

基金项目

浙江广播电视大学科研课题(XKT-15G17)

作者简介

徐会作, 男, 讲师, 研究方向为平均值理论、应用统计.E-mail:21888878@qq.com

文章历史

收稿日期:2016-10-17
Sándor-Yang平均关于一些二元平均凸组合的确界
徐会作     
温州广播电视大学 经管学院, 浙江 温州 325013
摘要:运用精细化的实分析方法,研究了Sándor-Yang平均SQAa,b)、SQAa,b)与算术平均Aa,b)和二次平均Qa,b)凸组合以及算术平均Aa,b)和反调和平均Ca,b)凸组合的序关系.得到了关于Sándor-Yang平均SQAa,b)、SQAa,b)的四个精确双向不等式.
关键词Schwab-Borchardt平均        ndor-Yang平均    算术平均    二次平均    反调和平均    
Sharp bounds for Sándor-Yang means in terms of some bivariate means
XU Hui-zuo    
School of Economics and Management, Wenzhou Broadcast and TV University, Wenzhou Zhejiang 325013, China
Abstract: This paper deals with the inequalities involving Sándor-Yang means derived from the Schwab-Borchardt mean using the method of real analysis. The convex com-binations of the arithmetic mean A(a, b) and quadratic Q(a, b) (or contra-harmonic mean C(a, b)) for the Sándor-Yang means SQA(a, b) and SQA(a, b) are disscused. The main results obtained are the sharp bounds of the two convex combinations, namely, the best possible parameters α1, α2, α3, α4, β1, β2, β3, β4 ∈ (0, 1), such that the double inequalities α1Q(a, b) + (1-α1)A(a, b) < SQA(a, b) < β1Q(a, b) + (1-β1)A(a, b),
  α2Q(a, b) + (1-α2)A(a, b) < SQA(a, b) < β2Q(a, b) + (1-β2)A(a, b),
  α3C(a, b) + (1-α3)A(a, b) < SQA(a, b) < β3C(a, b) + (1-β3)A(a, b),
  α4C(a, b) + (1-α4)A(a, b) < SQA(a, b) < β4C(a, b) + (1 -β4)A(a, b) hold for all a, b > 0 and ab. Here A(a, b), Q(a, b) and C(a, b) denote respectively the classical arithmetic, quadratic, contra-harmonic means of a and b, SQA(a, b) and SQA(a, b) are two Sándor-Yang means derived from the Schwab-Borchardt mean.
Key words: Schwab-Borchardt mean        ndor-Yang mean    arithmetic mean    quadratic mean    contra-harmonic mean    
0 引言

对所有$a, b>0$$a\ne b$, Schwab-Borchardt平均$SB({a, b})$[1-4]定义为

$ SB(a, b) = \left\{ \begin{array}{l} \frac{{\sqrt {{b^2}-{a^2}} }}{{{\rm{arccos}}(a/b)}}, a < b, \\ \frac{{\sqrt {{a^2}-{b^2}} }}{{{\rm{arccosh}}(a/b)}}, \quad a > b, \end{array} \right. $

其中$\mathrm {arccos}(x)$$\mathrm {arccosh} (x)=\log ({x+\sqrt{x^{2}-1}} )$分别是反余弦函数和反双曲余弦函数.

$G({a, b})=\sqrt{ab}$, $A({a, b})=( {a+b})/2$, $Q({a, b})=\sqrt{( {a^{2}+b^{2}} )/2}$, $C({a, b})=( {a^{2}+b^{2}} )/( a$ $+b)$$M_{p} ({a, b})=[{( {a^{p}+b^{p}} )/2}]^{1/p}$分别是两个正数$a$$b$的几何平均, 算术平均, 二次平均, 反调和平均和$p$阶幂平均.

我们熟知Schwab-Borchardt平均$SB({a, b})$关于正数$a$$b$都是严格单调递增的, 并且关于$a$$b$是非对称和一阶齐次的.许多对称二元平均都是Schwab-Borchardt平均的特殊情形.例如: $P({a, b})=(a-b)/[{2\arcsin ( {(a-b)/(a+b)} )}]=SB[{G({a, b}), A({a, b})}]$是第一类Seiffert平均, $T({a, b})=(a-b)/[{2\arctan ( {(a-b)/(a+b)} )}]=SB[{A({a, b}), Q({a, b})}]$是第二类Seiffert平均, $M({a, b})=(a-b)/[{2\mathrm {arcsinh} ( {(a-b)/(a+b)} )}]=SB[{Q({a, b}), A({a, b})}]$是Neuman-Sándor平均, $L({a, b})=(a-b)/[{2\mathrm {arctanh} ( {(a-b)/(a+b)} )}]=SB[{A({a, b}), G({a, b})}]$是对数平均.

我们熟知, 对所有$a, b>0$$a\ne b$, 不等式

$ G\left( {a, b} \right) < L\left( {a, b} \right) < P\left( {a, b} \right) < A\left( {a, b} \right) < M\left( {a, b} \right) < T\left( {a, b} \right) < Q\left( {a, b} \right) < C\left( {a, b} \right) $

成立.

在文献[5]中, 杨镇杭证明了$S({a, b})=b\mathrm e^{a/SB({a, b})-1}$是一个关于正数$a$$b$的平均, 并且介绍了两个Sándor-Yang平均如下.

$ \begin{array}{l} {S_{QA}}(a, b) = S[Q(a, b), A(a, b)]\\ \;\;\;\;\;\;\;\;\;\;\;\;\; = A(a, b){{\rm{e}}^{Q(a, b)/SB[Q(a, b), A(a, b)] -1}} = A(a, b){{\rm{e}}^{Q(a, b)/M(a, b) -1}}, \end{array} $ (0.1)
$ \begin{array}{l} {S_{AQ}}(a, b) = S[A(a, b), Q(a, b)]\\ \;\;\;\;\;\;\;\;\;\;\;\;\;\; = Q(a, b){{\rm{e}}^{A(a, b)/SB[A(a, b), Q(a, b)] -1}} = Q(a, b){{\rm{e}}^{A(a, b)/T(a, b) -1}}. \end{array} $ (0.2)

在文献[6-7]中, 杨镇杭等证明了对所有$a, b>0$$a\ne b$,

$ {M_1}\left( {a, b} \right) < {S_{AQ}}\left( {a, b} \right) < {M_2}\left( {a, b} \right) $

$ {S_{AQ}}(a, b) > {\lambda _p}{M_p}(a, b) $

成立, 且当$p\geqslant 3/4$时的最佳参数是$\lambda_{p} =\mathrm e^{\pi /4}2^{1/p-1/2}$.

最近, 赵铁洪、钱伟茂和宋迎清[8]证明了对所有$a, b>0$$a\ne b$, 双向不等式

$ \begin{array}{l} {M_\alpha }(a, b) < {S_{QA}}(a, b) < {M_\alpha }(a, b), \\ {M_\lambda }(a, b) < {S_{AQ}}(a, b) < {M_\mu }(a, b) \end{array} $

成立当且仅当$\alpha \leqslant \ln 2/[{1+\ln 2-\sqrt{2}\ln ( {1+\sqrt{2}} )}]\approx 1.551\, 7$, $\beta \geqslant 5/3$, $\lambda \leqslant 4\ln 2/[{4+2\ln 2-\pi }]\approx 1.235\, 1 $$\mu \geqslant 4/3$.

本文的主要目的是给出最佳参数$\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha _{4}, \beta_{1}, \beta_{2}, \beta_{3}, \beta_{4} \in ({0, 1})$,使得对所有$a, b>0$$a\ne b$, 双向不等式

$ \begin{array}{l} {\alpha _1}Q(a, b) + (1-{\alpha _1})A(a, b) < {S_{QA}}(a, b) < {\beta _1}Q(a, b) + (1-{\beta _1})A(a, b), \\ {\alpha _2}Q(a, b) + (1-{\alpha _2})A(a, b) < {S_{AQ}}(a, b) < {\beta _2}Q(a, b) + (1 - {\beta _2})A(a, b), \\ {\alpha _3}C(a, b) + (1 - {\alpha _3})A(a, b) < {S_{QA}}(a, b) < {\beta _3}C(a, b) + (1 - {\beta _3})A(a, b), \\ {\alpha _4}C(a, b) + (1 - {\alpha _4})A(a, b) < {S_{AQ}}(a, b) < {\beta _4}C(a, b) + (1 - {\beta _4})A(a, b) \end{array} $

成立.

1 引理

为了证明我们的主要结果, 本节给出我们需要的四个引理.

引理1.1 设$p\in ( {0, 1} )$,

$ f(x) = \frac{{\sqrt {{x^2}- 1} [(1-p)x + p]}}{{px + (1 -p)}} -{\rm{arcsinh}}(\sqrt {{x^2} -1} ), $ (1.1)

则以下结论成立.

(1) 若$p=2/3$, 则当$x\in ( {1, \sqrt{2}} )$时有$f(x)>0$;

(2) 若$p=( {1+\sqrt{2}} )[{( {1+\sqrt{2}} )^{\sqrt{2}}-\mathrm e}]/\mathrm e\approx 0.674\, 7$, 则存在$\lambda_{1} \in ( {1, \sqrt{2}} )$, 使得当$x\in ( {1, \lambda_{1} } )$时, $f(x) < 0$; 当$x\in ( {\lambda_{1}, \sqrt{2}} )$时, $f(x)>0$.

证 明 简单计算可得

$ \begin{array}{l} f(1) = 0, \\ f(\sqrt 2 ) = \frac{{\sqrt 2- (\sqrt 2- 1)p}}{{1 + (\sqrt 2- 1)p}} - \log (1 + \sqrt 2 ), \\ f'(x) = \frac{{\sqrt {{x^2} - 1} }}{{{{[px + (1-p)]}^2}}}{f_1}(x), \end{array} $

其中

$ \begin{array}{l} {f_1}(x) = p(1-p)x + {p^2}-4p + 2, \\ {{f'}_1}(x) = p(1-p) > 0. \end{array} $

(1) 若$p=2/3$, 则对于所有$x\in ( {1, \sqrt{2}} )$

$ \begin{array}{l} {f_1}(x) = \frac{2}{9}(x-1) > 0, \\ f'(x) > 0, \\ f(x) > f(1) = 0. \end{array} $

(2) 若$p=( {1+\sqrt{2}} )[{( {1+\sqrt{2}} )^{\sqrt{2}}-\mathrm e}]/\mathrm e\approx0.674\, 7$, 数值计算可得

$ \begin{array}{l} f(\sqrt 2 ) \approx 0.005{\mkern 1mu} 5 > 0, \\ {f_1}(1) = 2- 3p \approx- 0.024{\mkern 1mu} 1 < 0, \\ {f_1}(\sqrt 2 ) =- (\sqrt 2 - 1)[{p^2} + \sqrt 2 (3 + \sqrt 2 )p-2(1 + \sqrt 2 )] \approx 0.066{\mkern 1mu} 7 > 0. \end{array} $

我们由上述系列等式和不等式, 并结合$f(x)$在分段区间上的单调性容易得到引理1.1(2).

引理1.2 设$p\in ( {0, 1} )$,

$ g(x) = \frac{{\sqrt {{x^2}- 1} [(1-p)x + p]}}{{x[px + (1-p)]}} -\arctan (\sqrt {{x^2} -1} ), $ (1.2)

则以下结论成立.

(1) 若$p=1/3$, 则当$x\in ( {1, \sqrt{2}} )$时有$g(x)>0$;

(2) 若$p=( {\sqrt{2}\mathrm e^{\frac{\pi }{4}-1}-1} )/( {\sqrt{2}-1} )\approx0.340\, 5$, 则存在$\lambda_{2} \in ( {1, \sqrt{2}} )$, 使得当$x\in ( {1, \lambda_{2} } )$时, $g(x) < 0$; 当$x\in ( {\lambda_{2}, \sqrt{2}} )$时, $g(x)>0$.

证 明 简单计算可得

$ \begin{array}{l} g(1) = 0, \\ g(\sqrt 2 ) = \frac{{\sqrt 2- (\sqrt 2- 1)p}}{{\sqrt 2 + (2- \sqrt 2 )p}} - \frac{\pi }{4}, \\ g'(x) = - \frac{{\sqrt {{x^2} - 1} }}{{{x^2}{{[px + (1-p)]}^2}}}{g_1}(x), \end{array} $

其中

$ \begin{array}{l} {g_1}(x) = ({p^2} + 2p-1)x + p(1-p), \\ {{g'}_1}(x) = ({p^2} + 2p-1). \end{array} $

(1) 若$p=1/3$, 则对于所有$x\in ( {1, \sqrt{2}} )$

$ \begin{array}{l} {g_1}(x) =-\frac{2}{9}(x-1) < 0, \\ g'(x) > 0, \\ g(x) > g(1) = 0. \end{array} $

(2) 若$p=( {\sqrt{2}\mathrm e^{\frac{\pi }{4}-1}-1} )/( {\sqrt{2}-1} )\approx0.340\, 5 $, 对于所有$x\in ( {1, \sqrt{2}} )$, 数值计算可得

$ \begin{array}{l} g(\sqrt 2 ) \approx 0.003{\mkern 1mu} 5 > 0, \\ {{g'}_1}(x) = ({p^2} + 2p-1) \approx-0.202{\mkern 1mu} 8 < 0, \\ {g_1}(1) = 3p-1 \approx 0.021{\mkern 1mu} 7 > 0, \\ {g_1}(\sqrt 2 ) = (\sqrt 2 - 1){p^2} + (2\sqrt 2 + 1)p - \sqrt 2 \approx - 0.062{\mkern 1mu} 2 < 0. \end{array} $

我们由上述系列等式和不等式, 并结合$g(x)$在分段区间上的单调性, 容易得到引理1.2(2).

引理1.3 设$p\in ( {0, 1} )$,

$ h(x) = \frac{{x\sqrt {{x^2}- 1} [-p{x^2} + (1 + p)]}}{{p{x^2} + (1 -p)}} -{\rm{arcsinh}}(\sqrt {{x^2} -1} ), $ (1.3)

则以下结论成立.

(1) 若$p=1/3$, 则当$x\in ( {1, \sqrt{2}} )$时有$h(x) < 0$;

(2) 若$p=( {1+\sqrt{2}} )^{\sqrt{2}}/\mathrm e-1\approx0.279\, 4 $, 则存在$\lambda_{3} \in ( {1, \sqrt{2}} )$使得当$x\in ( {1, \lambda _{3} } )$时,$h(x)>0$;当$x\in ( {\lambda_{3}, \sqrt{2}} )$时,$h(x) < 0$.

证 明 简单计算可得

$ \begin{array}{l} h(1) = 0, \\ h(\sqrt 2 ) = \frac{{\sqrt 2 (1- p)}}{{1 + p}}- \log (1 + \sqrt 2 ), \\ h'(x) =- \frac{{\sqrt {{x^2} - 1} }}{{{{[p{x^2} + (1-p)]}^2}}}{h_1}(x), \end{array} $

其中

$ {h_1}(x) = {p^2}{x^4} + p(2-p){x^2} + p-1. $

(1) 若$p=1/3$, 则对于所有$x\in ( {1, \sqrt{2}} )$整理可得

$ \begin{array}{l} {h_1}(x) = \frac{1}{9}({x^2}-1)({x^2} + 6) > 0, \\ h'(x) < 0, \\ h(x) < h(1) = 0. \end{array} $

(2) 若$p=( {1+\sqrt{2}} )^{\sqrt{2}}/\mathrm e-1\approx0.279\, 4 $, 对于所有$x\in ( {1, \sqrt{2}} )$, 我们有

$ \begin{array}{l} h(\sqrt 2 ) \approx-0.084{\mkern 1mu} 9 < 0, \\ {h_1}(1) = 3p-1 \approx-0.161{\mkern 1mu} 5 < 0, \\ {h_1}(\sqrt 2 ) = 2{p^2} + 5p - 1 \approx {\mkern 1mu} 0.553{\mkern 1mu} 5 > 0, \\ {{h'}_1}(x) = 4{p^2}{x^3} + 2p(2 - p)x > 0. \end{array} $

我们由上述系列等式和不等式, 并结合$h(x)$在分段区间上的单调性, 容易得到引理1.3(2).

引理1.4 设$p\in ( {0, 1} )$,

$ k(x) = \frac{{\sqrt {{x^2}- 1} [-p{x^2} + (1 + p)]}}{{p{x^2} + (1 -p)}} -\arctan (\sqrt {{x^2} -1} ), $ (1.4)

则以下结论成立.

(1) 若$p=1/6$, 则当$x\in ( {1, \sqrt{2}} )$时有$k(x)< 0$;

(2) 若$p=\sqrt{2}\mathrm e^{\frac{\pi }{4}-1}-1\approx 0.141\, 0 $, 则存在$\lambda_{4} \in ( {1, \sqrt{2}} )$, 使得当$x\in ( {1, \lambda_{4} } )$时, $k(x)>0$; 当$x\in ( {\lambda_{4}, \sqrt{2}} )$时, $k(x)< 0$.

证 明 简单计算可得

$ \begin{array}{l} k(1) = 0, \\ k(\sqrt 2 ) = \frac{{1- p}}{{1 + p}}- \frac{\pi }{4}, \\ k'(x) =- \frac{{\sqrt {{x^2} - 1} }}{{{{[p{x^2} + (1-p)]}^2}}}{k_1}(x), \end{array} $

其中

$ {k_1}(x) = {p^2}{x^4} + 4p{x^2}-{(1-p)^2}. $

(1) 若$p=1/6$, 则对于所有$x\in ( {1, \sqrt{2}} )$, 有

$ \begin{array}{l} {k_1}(x) = \frac{1}{{36}}({x^2}-1)({x^2} + 25) > 0, \\ k'(x) < 0, \\ k(x) < k(1) = 0. \end{array} $

(2) 若$p=\sqrt{2}\mathrm e^{\frac{\pi }{4}-1}-1\approx0.141\, 0 $, 对于所有$x\in ( {1, \sqrt{2}} )$, 我们有

$ \begin{array}{l} k(\sqrt 2 ) \approx-0.032{\mkern 1mu} 6 < 0, \\ {k_1}(1) = 6p-1 \approx-0.153{\mkern 1mu} 5 < 0\\ {k_1}(\sqrt 2 ) = 3{p^2} + 10p - 1 \approx 0.470{\mkern 1mu} 4 > 0, \\ {{k'}_1}(x) = 4{p^2}{x^3} + 8px > 0. \end{array} $

我们由上述系列等式和不等式, 并结合$k(x)$在分段区间上的单调性, 容易得到引理1.4(2).

2 主要结果

定理2.1 双向不等式

$ {\alpha _1}Q(a, b) + (1-{\alpha _1})A(a, b) < {S_{QA}}(a, b) < {\beta _1}Q(a, b) + (1-{\beta _1})A(a, b) $ (2.1)

对所有$a, b>0$$a\ne b$成立的充分必要条件是$\alpha_{1} \leqslant 2/3$, $\beta _{1} \geqslant ( {1+\sqrt{2}} )[{( {1+\sqrt{2}} )^{\sqrt{2}}-\mathrm e}]/\mathrm e\approx0.674\, 7$.

证 明 设$p_{1} =( {1+\sqrt{2}} )[{( {1+\sqrt{2}} )^{\sqrt{2}}-\mathrm e}]/\mathrm e\approx0.674\, 7 $.因$S_{QA} ({a, b})$, $Q({a, b})$$A( {a, b} )$是对称且一阶齐次的, 不失一般性, 我们不妨设$a>b>0$.令$v=(a-b)/(a+b)\in ( {0, 1} )$, $x=\sqrt{1+v^{2}}\in ( {1, \sqrt{2}} )$以及$p\in [{0, 1}]$.则从等式(0.1) 和$Q({a, b})=A({a, b})\sqrt{1+v^{2}}$可得

$ \frac{{{S_{QA}}(a, b)-A(a, b)}}{{Q(a, b)-A(a, b)}} = \frac{{{{\rm{e}}^{\frac{{\sqrt {1 + {v^2}} {\rm{arcsinh}}(v)}}{v}-1}} - 1}}{{\sqrt {1 + {v^2}} - 1}}, $ (2.2)
$ \mathop {\lim }\limits_{v \to {0^ + }} = \frac{{{{\rm{e}}^{\frac{{\sqrt {1 + {v^2}} {\rm{arcsinh}}(v)}}{v}-1}}-1}}{{\sqrt {1 + {v^2}}-1}} = \frac{2}{3}, $ (2.3)
$ \begin{array}{l} \mathop {\lim }\limits_{v \to {1^-}} = \frac{{{{\rm{e}}^{\frac{{\sqrt {1 + {v^2}} {\rm{arcsinh}}(v)}}{v}-1}}-1}}{{\sqrt {1 + {v^2}} - 1}} = \frac{1}{{\rm{e}}}{(1 + \sqrt 2 )^{1 + \sqrt 2 }} - (1 + \sqrt 2 )\\ \;\;\;\;\;\; \approx 0.6747, \end{array} $ (2.4)
$ \begin{array}{l} \log \frac{{{S_{QA}}(a, b)}}{{pQ(a, b) + (1- p)A(a, b)}} = \frac{{\sqrt {1 + {v^2}} {\rm{arcsinh}}(v)}}{v}- 1- \log [p\sqrt {1 + {v^2}} + (1-p)]\\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; = \frac{{x{\rm{arcsinh}}(\sqrt {{x^2} - 1} )}}{{\sqrt {{x^2} - 1} }} - 1 - \log [px + (1-p)]. \end{array} $ (2.5)

$ F(x) = \frac{{x{\rm{arcsinh}}(\sqrt {{x^2}- 1} )}}{{\sqrt {{x^2}- 1} }}- 1 - \log [px + (1-p)]. $ (2.6)

简单计算可得

$ F(1) = 0, $ (2.7)
$ F(\sqrt 2 ) = (1 + \sqrt 2 )\log (1 + \sqrt 2 )-\log (1 + \sqrt 2 + p)-1, $ (2.8)
$ F'(x) = \frac{1}{{{{({x^2}-1)}^{3/2}}}}f(x), $ (2.9)

其中$f(x)$的定义由引理1.1给出.

我们分两种情形证明.

情形1 若$p=2/3$.则从等式(2.5)-(2.7) 和(2.9), 结合引理1.1(1) 可得结论

$ {S_{QA}}(a, b) > \frac{2}{3}Q(a, b) + \frac{1}{3}A(a, b). $ (2.10)

情形2 若$p=p_{1} $.则从等式(2.9) 和引理1.1(2) 可得结论:存在$\lambda_{1} \in ( {1, \sqrt{2}} )$, 使得当$x\in ( {1, \lambda_{1} }]$时, $F(x)$严格单调递减; 当$x\in [{\lambda_{1}, \sqrt{2}} )$时, $F(x)$严格单调递增.注意从等式(2.8) 可推得

$ F(\sqrt 2 ) = 0. $ (2.11)

我们从等式(2.5)-(2.7) 和(2.11), 结合$F(x)$的分段单调性, 可得

$ {S_{QA}}\left( {a, b} \right) < {p_1}Q\left( {a, b} \right) + \left( {1-{p_1}} \right)A\left( {a, b} \right). $ (2.12)

所以, 我们从等式(2.3)-(2.4) 和不等式(2.10)、(2.12), 并结合不等式(2.1) 等价(2.13) 的事实,容易得到定理2.1,

$ {\alpha _1} < \frac{{{{\rm{e}}^{\frac{{\sqrt {1 + {v^2}} {\rm{arcsinh}}(v)}}{v}-1}}-1}}{{\sqrt {1 + {v^2}}-1}} < {\beta _1}. $ (2.13)

定理2.2 双向不等式

$ {\alpha _2}Q(a, b) + (1-{\alpha _2})A(a, b) < {Y_{AQ}}(a, b) < {\beta _2}Q(a, b) + (1-{\beta _2})A(a, b) $ (2.14)

对所有$a, b>0$$a\ne b$成立的充分必要条件是$\alpha_{2} \leqslant 1/3$, $\beta _{2} \geqslant ( {\sqrt{2}\mathrm e^{\frac{\pi }{4}-1}-1} )/( {\sqrt{2}-1} )\approx0.340\, 5$.

证 明 设$p_{2} =( {\sqrt{2}\mathrm e^{\frac{\pi }{4}-1}-1} )/( {\sqrt{2}-1} )\approx0.340\, 5 $.因为$S_{AQ} ({a, b})$, $Q({a, b})$$A({a, b})$是对称且一阶齐次的, 不失一般性, 我们不妨设$a>b$.令$v=(a-b)/(a+b)\in ( {0, 1} )$, $x=\sqrt{1+v^{2}}\in ( {1, \sqrt{2}} )$$p\in [{0, 1}]$.从等式(0.2) 可得

$ \frac{{{S_{AQ}}(a, b)-A(a, b)}}{{Q(a, b)-A(a, b)}} = \frac{{\sqrt {1 + {v^2}} {{\rm{e}}^{\frac{{\arctan (v)}}{v}-1}} - 1}}{{\sqrt {1 + {v^2}} - 1}}, $ (2.15)
$ \mathop {\lim }\limits_{v \to {0^ + }} \frac{{\sqrt {1 + {v^2}} {{\rm{e}}^{\frac{{\arctan (v)}}{v}-1}}-1}}{{\sqrt {1 + {v^2}}-1}} = \frac{1}{3}, $ (2.16)
$ \mathop {\lim }\limits_{v \to {1^-}} \frac{{\sqrt {1 + {v^2}} {{\rm{e}}^{\frac{{\arctan (v)}}{v}-1}}-1}}{{\sqrt {1 + {v^2}} - 1}} = \frac{{\sqrt 2 {{\rm{e}}^{\frac{\pi }{4} - 1}} - 1}}{{\sqrt 2 - 1}} \approx 0.340{\mkern 1mu} 5, $ (2.17)
$ \begin{array}{l} \log \frac{{{S_{AQ}}(a, b)}}{{pQ(a, b) + (1- p)A(a, b)}} = \log \sqrt {1 + {v^2}} + \frac{{\arctan (v)}}{v}- 1- \log [p\sqrt {1 + {v^2}} + (1-p)]\\ = \log x + \frac{{\arctan (\sqrt {{x^2} - 1} )}}{{\sqrt {{x^2} - 1} }} - 1 - \log [px + (1-p)]. \end{array} $ (2.18)

$ G(x) = \log x + \frac{{\arctan (\sqrt {{x^2}- 1} )}}{{\sqrt {{x^2}- 1} }}- 1 - \log [px + (1-p)]. $ (2.19)

简单计算可得

$ G{\rm{(1) = 0, }} $ (2.20)
$ G(\sqrt 2 ) = \log \sqrt 2 + \frac{\pi }{4}- 1- \log [(\sqrt 2-1)p + 1], $ (2.21)
$ G'(x) = \frac{x}{{{{({x^2}-1)}^{3/2}}}}g(x), $ (2.22)

其中$g(x)$的定义由引理1.2给出.

我们分两种情形证明.

情形1 若$p=1/3$.则从等式(2.18)-(2.20) 和(2.22) 以及引理1.2(1) 可得结论

$ {S_{AQ}}(a, b) > \frac{1}{3}Q(a, b) + \frac{2}{3}A(a, b). $ (2.23)

情形2 若$p=p_{2} $.则从引理1.2(2) 和等式(2.22) 可知存在$\lambda _{2} \in ( {1, \sqrt{2}} )$, 使得当$x\in ( {1, \lambda_{2} }]$$G(x)$是严格单调递减的; 当$x\in [{\lambda_{2}, \sqrt{2}} )$$G(x)$严格单调递增的.注意从等式(2.21) 可推得

$ G(\sqrt 2 ) = 0. $ (2.24)

从等式(2.18)-(2.20) 和(2.24) 结合$G(x)$的分段单调性, 可得

$ {S_{QA}}\left( {a, b} \right) < {p_2}Q\left( {a, b} \right) + \left( {1-{p_2}} \right)A\left( {a, b} \right). $ (2.25)

所以, 我们从等式(2.16)-(2.17) 和不等式(2.23)、(2.25), 并结合不等式(2.14) 等价于(2.26) 的事实, 容易得到定理2.2,

$ {\alpha _2} < \frac{{\sqrt {1 + {v^2}} {{\rm{e}}^{\frac{{\arctan (v)}}{v}-1}}-1}}{{\sqrt {1 + {v^2}}-1}} < {\beta _2}. $ (2.26)

定理2.3 双向不等式

$ {\alpha _3}C(a, b) + (1-{\alpha _3})A(a, b) < {S_{QA}}(a, b) < {\beta _3}C(a, b) + (1-{\beta _3})A(a, b) $ (2.27)

对所有$a, b>0$$a\ne b$成立的充分必要条件是$\alpha_{3} \leqslant ( {1+\sqrt{2}} )^{\sqrt{2}}/\mathrm e-1\approx0.279\, 4$, $\beta_{3} \geqslant 1/3$.

证 明 不失一般性, 我们不妨设$a>b>0$.令$v=(a-b)/(a+b)\in ( {0, 1} )$, $x=\sqrt{1+v^{2}}\in ( {1, \sqrt{2}} )$$p\in [{0, 1}]$.从等式(0.1) 和$C({a, b})=A({a, b})( {1+v^{2}} )$可得

$ \frac{{{S_{QA}}(a, b)-A(a, b)}}{{C(a, b)-A(a, b)}} = \frac{{{{\rm{e}}^{\frac{{\sqrt {1 + {v^2}} {\rm{arcsinh}}(v)}}{v}-1}} - 1}}{{{v^2}}}, $ (2.28)
$ \mathop {\lim }\limits_{v \to {0^ + }} \frac{{{{\rm{e}}^{\frac{{\sqrt {1 + {v^2}} {\rm{arcsinh}}(v)}}{v}-1}}-1}}{{{v^2}}} = \frac{1}{3}, $ (2.29)
$ \mathop {\lim }\limits_{x \to {1^-}} \frac{{{{\rm{e}}^{\frac{{\sqrt {1 + {v^2}} {\rm{arcsinh}}(v)}}{v}-1}}-1}}{{{v^2}}} = \frac{{{{(1 + \sqrt 2 )}^{\sqrt 2 }}}}{{\rm{e}}} - 1 \approx 0.279{\mkern 1mu} 4, $ (2.30)
$ \begin{array}{l} \log \frac{{{S_{QA}}(a, b)}}{{pC(a, b) + (1- p)A(a, b)}} = \frac{{\sqrt {1 + {v^2}} {\rm{arcsinh}}(v)}}{v}- 1- \log [p(1 + {v^2}) + (1-p)]\\ = \frac{{x{\rm{arcsinh}}(\sqrt {{x^2} - 1} )}}{{\sqrt {{x^2} - 1} }} - 1 - \log [p{x^2} + (1-p)]. \end{array} $ (2.31)

$ H(x) = \frac{{x{\rm{arcsinh}}(\sqrt {{x^2}- 1} )}}{{\sqrt {{x^2}- 1} }}- 1 - \log [p{x^2} + (1-p)]. $ (2.32)

简单计算可得

$ H{\rm{(1) = 0, }} $ (2.33)
$ H(\sqrt 2 ) = \sqrt 2 \log (1 + \sqrt 2 )-1-\log (1 + p), $ (2.34)
$ H'(x) = \frac{1}{{{{({x^2}-1)}^{3/2}}}}h(x), $ (2.35)

其中$h(x)$的定义由引理1.3给出.

我们分两种情形证明.

情形1 若$p=( {1+\sqrt{2}} )^{\sqrt{2}}/\mathrm e-1\approx0.279\, 4 $.则从引理1.3(2) 和等式(2.35) 可知存在$\lambda_{3} \in ( {1, \sqrt{2}} )$, 使得当$x\in ( {1, \lambda_{3} }]$$H(x)$是严格单调递增的; 当$[{\lambda_{3}, \sqrt{2}} )$$H(x)$是严格单调递减的.注意从等式(2.34) 可推得

$ H(\sqrt 2 ) = 0. $ (2.36)

从等式(2.31)-(2.33) 和(2.36) 结合$H(x)$的分段单调性, 可得

$ {S_{AQ}}(a, b) > [{(1 + \sqrt 2 )^{\sqrt 2 }}/{\rm{e}}-1]C(a, b) + [2-{(1 + \sqrt 2 )^{\sqrt 2 }}/{\rm{e}}]A(a, b). $ (2.37)

情形2 若$p=1/3$.则从等式(2.31)-(2.33) 和(2.35), 并结合引理1.3(1), 可得结论

$ {S_{AQ}}(a, b) < \frac{1}{3}C(a, b) + \frac{2}{3}A(a, b). $ (2.38)

所以, 我们从等式(2.29)-(2.30) 和不等式(2.37)、(2.38), 并结合不等式(2.27) 等价于(2.39) 的事实, 容易得到定理2.3,

$ {\alpha _3} < \frac{{{{\rm{e}}^{\frac{{\sqrt {1 + {v^2}} {\rm{arcsinh}}(v)}}{v}-1}}-1}}{{{v^2}}} < {\beta _3}. $ (2.39)

定理2.4 双向不等式

$ {\alpha _4}C(a, b) + (1-{\alpha _4})A(a, b) < {S_{AQ}}(a, b) < {\beta _4}C(a, b) + (1-{\beta _4})A(a, b) $ (2.40)

对所有$a, b>0$$a\ne b$成立的充分必要条件是$\alpha_{4} \leqslant \sqrt{2}\mathrm e^{\frac{\pi }{4}-1}-1\approx0.141\, 0$, $\beta_{4} \geqslant 1/6$.

证 明 不失一般性,我们不妨设$a>b>0$.设$v=(a-b)/(a+b)\in ( {0, 1} )$, $x=\sqrt{1+v^{2}}\in ( {1, \sqrt{2}} )$$p\in [{0, 1}]$.从等式(0.2) 可得

$ \frac{{{S_{AQ}}(a, b)-A(a, b)}}{{C(a, b)-A(a, b)}} = \frac{{\sqrt {1 + {v^2}} {{\rm{e}}^{\frac{{\arctan (v)}}{v}-1}} - 1}}{{{v^2}}}, $ (2.41)
$ \mathop {\lim }\limits_{v \to {0^ + }} \frac{{\sqrt {1 + {v^2}} {{\rm{e}}^{\frac{{\arctan (v)}}{v}-1}}-1}}{{{v^2}}} = \frac{1}{6}, $ (2.42)
$ \mathop {\lim }\limits_{v \to {1^-}} \frac{{\sqrt {1 + {v^2}} {{\rm{e}}^{\frac{{\arctan (v)}}{v}-1}}-1}}{{{v^2}}} = \sqrt 2 {{\rm{e}}^{\frac{\pi }{4} - 1}} - 1 \approx 0.141{\mkern 1mu} 0, $ (2.43)
$ \begin{array}{l} \log \frac{{{S_{AQ}}(a, b)}}{{pC(a, b) + (1- p)A(a, b)}} = \log \sqrt {1 + {v^2}} + \frac{{\arctan (v)}}{v}- 1- \log [p(1 + {v^2}) + (1-p)]\\ = \log x + \frac{{\arctan (\sqrt {{x^2} - 1} )}}{{\sqrt {{x^2} - 1} }} - 1 - \log [p{x^2} + (1-p)]. \end{array} $ (2.44)

$ J(x) = \log x + \frac{{\arctan (\sqrt {{x^2}- 1} )}}{{\sqrt {{x^2}- 1} }}- 1 - \log [p{x^2} + (1-p)]. $ (2.45)

简单计算可得

$ J{\rm{(1) = 0, }} $ (2.46)
$ J(\sqrt 2 ) = \log \sqrt 2 + \frac{\pi }{4}-1-\log (1 + p), $ (2.47)
$ J'(x) = \frac{x}{{{{({x^2}-1)}^{3/2}}}}k(x), $ (2.48)

其中$k(x)$的定义由引理1.4给出.

我们分两种情形证明.

情形1 $p=\sqrt{2}\mathrm e^{\frac{\pi }{4}-1}-1\approx0.141\, 0$.则从引理1.4(2) 和等式(2.48) 可知存$\lambda_{4} \in ( {1, \sqrt{2}} )$, 使得当$x\in ( {1, \lambda_{4} }]$$J(x)$是严格单调递增的; 当$x\in [{\lambda_{4}, \sqrt{2}} )$$J(x)$是严格单调递减的.注意从等式(2.47) 可推得

$ J(\sqrt 2 ) = 0. $ (2.49)

从等式(2.44)-(2.46) 和(2.49) 结合$J(x)$的分段单调性, 可得

$ {S_{AQ}}(a, b) > (\sqrt 2 {{\rm{e}}^{\frac{\pi }{4}-1}}-1)Q(a, b) + (2-\sqrt 2 {{\rm{e}}^{\frac{\pi }{4} - 1}})A(a, b). $ (2.50)

情形2 若$p=1/6$.从等式(2.44)--(2.46) 和(2.48) 并结合引理1.4(1), 可得结论

$ {S_{AQ}}(a, b) < \frac{1}{6}Q(a, b) + \frac{5}{6}A(a, b). $ (2.51)

所以, 我们从等式(2.42)-(2.43) 和不等式(2.50)、(2.51), 并结合不等式(2.40) 等价于(2.52) 的事实, 容易得到定理2.4,

$ {\alpha _4} < \frac{{\sqrt {1 + {v^2}} {{\rm{e}}^{\frac{{{\rm{arctan}}(v)}}{v}-1}}-1}}{{{v^2}}} < {\beta _4}. $ (2.52)
参考文献
[1] BRENNER J L, CARLSON B C. Homogeneous mean values: Weights and asymptotes[J]. Journal of Mathemat-ical Analysis and Applications, 1987, 123: 265-280. DOI:10.1016/0022-247X(87)90308-8
[2] CARLSON B C. Algorithms involving arithmetic and geometric means[J]. The American Mathematical Monthly, 1971, 78(5): 496-505. DOI:10.2307/2317754
[3] NEUMAN E, SÁNDOR J. On the Schwab-Borchardt mean[J]. Mathematica Pannonica, 2003, 14(2): 253-266.
[4] NEUMAN E, SÁNDOR J. On the Schwab-Borchardt mean Ⅱ[J]. Mathematica Pannonica, 2006, 17(1): 49-59.
[5] YANG Z H. Three families of two-parameter means constructed by trigonometric functions[J]. Journal of In-equalities and Applications, 2013(1): 1-27.
[6] YANG Z H, JIANG Y L, SONG Y Q, et al. Sharp inequalities for trigonometric functions[J]. Abstract and Applied Analysis, 2014, 18: pages
[7] YANG Z H, CHU Y M. Optimal evaluations for the Sándor-Yang mean by power mean[J]. Mathematical In-equalities & Applications, 2016, 19(3): 1031-1038.
[8] ZHAO T H, QIAN W M, SONG Y Q. Optimal bounds for two Sándor-type means in terms of power means[J]. Journal of Inequalities and Applications, 2016(1): 64