α2Q(a, b) + (1-α2)A(a, b) < SQA(a, b) < β2Q(a, b) + (1-β2)A(a, b),
α3C(a, b) + (1-α3)A(a, b) < SQA(a, b) < β3C(a, b) + (1-β3)A(a, b),
α4C(a, b) + (1-α4)A(a, b) < SQA(a, b) < β4C(a, b) + (1 -β4)A(a, b) hold for all a, b > 0 and a≠b. Here A(a, b), Q(a, b) and C(a, b) denote respectively the classical arithmetic, quadratic, contra-harmonic means of a and b, SQA(a, b) and SQA(a, b) are two Sándor-Yang means derived from the Schwab-Borchardt mean.
对所有
$ SB(a, b) = \left\{ \begin{array}{l} \frac{{\sqrt {{b^2}-{a^2}} }}{{{\rm{arccos}}(a/b)}}, a < b, \\ \frac{{\sqrt {{a^2}-{b^2}} }}{{{\rm{arccosh}}(a/b)}}, \quad a > b, \end{array} \right. $ |
其中
设
我们熟知Schwab-Borchardt平均
我们熟知, 对所有
$ G\left( {a, b} \right) < L\left( {a, b} \right) < P\left( {a, b} \right) < A\left( {a, b} \right) < M\left( {a, b} \right) < T\left( {a, b} \right) < Q\left( {a, b} \right) < C\left( {a, b} \right) $ |
成立.
在文献[5]中, 杨镇杭证明了
$ \begin{array}{l} {S_{QA}}(a, b) = S[Q(a, b), A(a, b)]\\ \;\;\;\;\;\;\;\;\;\;\;\;\; = A(a, b){{\rm{e}}^{Q(a, b)/SB[Q(a, b), A(a, b)] -1}} = A(a, b){{\rm{e}}^{Q(a, b)/M(a, b) -1}}, \end{array} $ | (0.1) |
$ \begin{array}{l} {S_{AQ}}(a, b) = S[A(a, b), Q(a, b)]\\ \;\;\;\;\;\;\;\;\;\;\;\;\;\; = Q(a, b){{\rm{e}}^{A(a, b)/SB[A(a, b), Q(a, b)] -1}} = Q(a, b){{\rm{e}}^{A(a, b)/T(a, b) -1}}. \end{array} $ | (0.2) |
在文献[6-7]中, 杨镇杭等证明了对所有
$ {M_1}\left( {a, b} \right) < {S_{AQ}}\left( {a, b} \right) < {M_2}\left( {a, b} \right) $ |
和
$ {S_{AQ}}(a, b) > {\lambda _p}{M_p}(a, b) $ |
成立, 且当
最近, 赵铁洪、钱伟茂和宋迎清[8]证明了对所有
$ \begin{array}{l} {M_\alpha }(a, b) < {S_{QA}}(a, b) < {M_\alpha }(a, b), \\ {M_\lambda }(a, b) < {S_{AQ}}(a, b) < {M_\mu }(a, b) \end{array} $ |
成立当且仅当
本文的主要目的是给出最佳参数
$ \begin{array}{l} {\alpha _1}Q(a, b) + (1-{\alpha _1})A(a, b) < {S_{QA}}(a, b) < {\beta _1}Q(a, b) + (1-{\beta _1})A(a, b), \\ {\alpha _2}Q(a, b) + (1-{\alpha _2})A(a, b) < {S_{AQ}}(a, b) < {\beta _2}Q(a, b) + (1 - {\beta _2})A(a, b), \\ {\alpha _3}C(a, b) + (1 - {\alpha _3})A(a, b) < {S_{QA}}(a, b) < {\beta _3}C(a, b) + (1 - {\beta _3})A(a, b), \\ {\alpha _4}C(a, b) + (1 - {\alpha _4})A(a, b) < {S_{AQ}}(a, b) < {\beta _4}C(a, b) + (1 - {\beta _4})A(a, b) \end{array} $ |
成立.
1 引理为了证明我们的主要结果, 本节给出我们需要的四个引理.
引理1.1 设
$ f(x) = \frac{{\sqrt {{x^2}- 1} [(1-p)x + p]}}{{px + (1 -p)}} -{\rm{arcsinh}}(\sqrt {{x^2} -1} ), $ | (1.1) |
则以下结论成立.
(1) 若
(2) 若
证 明 简单计算可得
$ \begin{array}{l} f(1) = 0, \\ f(\sqrt 2 ) = \frac{{\sqrt 2- (\sqrt 2- 1)p}}{{1 + (\sqrt 2- 1)p}} - \log (1 + \sqrt 2 ), \\ f'(x) = \frac{{\sqrt {{x^2} - 1} }}{{{{[px + (1-p)]}^2}}}{f_1}(x), \end{array} $ |
其中
$ \begin{array}{l} {f_1}(x) = p(1-p)x + {p^2}-4p + 2, \\ {{f'}_1}(x) = p(1-p) > 0. \end{array} $ |
(1) 若
$ \begin{array}{l} {f_1}(x) = \frac{2}{9}(x-1) > 0, \\ f'(x) > 0, \\ f(x) > f(1) = 0. \end{array} $ |
(2) 若
$ \begin{array}{l} f(\sqrt 2 ) \approx 0.005{\mkern 1mu} 5 > 0, \\ {f_1}(1) = 2- 3p \approx- 0.024{\mkern 1mu} 1 < 0, \\ {f_1}(\sqrt 2 ) =- (\sqrt 2 - 1)[{p^2} + \sqrt 2 (3 + \sqrt 2 )p-2(1 + \sqrt 2 )] \approx 0.066{\mkern 1mu} 7 > 0. \end{array} $ |
我们由上述系列等式和不等式, 并结合
引理1.2 设
$ g(x) = \frac{{\sqrt {{x^2}- 1} [(1-p)x + p]}}{{x[px + (1-p)]}} -\arctan (\sqrt {{x^2} -1} ), $ | (1.2) |
则以下结论成立.
(1) 若
(2) 若
证 明 简单计算可得
$ \begin{array}{l} g(1) = 0, \\ g(\sqrt 2 ) = \frac{{\sqrt 2- (\sqrt 2- 1)p}}{{\sqrt 2 + (2- \sqrt 2 )p}} - \frac{\pi }{4}, \\ g'(x) = - \frac{{\sqrt {{x^2} - 1} }}{{{x^2}{{[px + (1-p)]}^2}}}{g_1}(x), \end{array} $ |
其中
$ \begin{array}{l} {g_1}(x) = ({p^2} + 2p-1)x + p(1-p), \\ {{g'}_1}(x) = ({p^2} + 2p-1). \end{array} $ |
(1) 若
$ \begin{array}{l} {g_1}(x) =-\frac{2}{9}(x-1) < 0, \\ g'(x) > 0, \\ g(x) > g(1) = 0. \end{array} $ |
(2) 若
$ \begin{array}{l} g(\sqrt 2 ) \approx 0.003{\mkern 1mu} 5 > 0, \\ {{g'}_1}(x) = ({p^2} + 2p-1) \approx-0.202{\mkern 1mu} 8 < 0, \\ {g_1}(1) = 3p-1 \approx 0.021{\mkern 1mu} 7 > 0, \\ {g_1}(\sqrt 2 ) = (\sqrt 2 - 1){p^2} + (2\sqrt 2 + 1)p - \sqrt 2 \approx - 0.062{\mkern 1mu} 2 < 0. \end{array} $ |
我们由上述系列等式和不等式, 并结合
引理1.3 设
$ h(x) = \frac{{x\sqrt {{x^2}- 1} [-p{x^2} + (1 + p)]}}{{p{x^2} + (1 -p)}} -{\rm{arcsinh}}(\sqrt {{x^2} -1} ), $ | (1.3) |
则以下结论成立.
(1) 若
(2) 若
证 明 简单计算可得
$ \begin{array}{l} h(1) = 0, \\ h(\sqrt 2 ) = \frac{{\sqrt 2 (1- p)}}{{1 + p}}- \log (1 + \sqrt 2 ), \\ h'(x) =- \frac{{\sqrt {{x^2} - 1} }}{{{{[p{x^2} + (1-p)]}^2}}}{h_1}(x), \end{array} $ |
其中
$ {h_1}(x) = {p^2}{x^4} + p(2-p){x^2} + p-1. $ |
(1) 若
$ \begin{array}{l} {h_1}(x) = \frac{1}{9}({x^2}-1)({x^2} + 6) > 0, \\ h'(x) < 0, \\ h(x) < h(1) = 0. \end{array} $ |
(2) 若
$ \begin{array}{l} h(\sqrt 2 ) \approx-0.084{\mkern 1mu} 9 < 0, \\ {h_1}(1) = 3p-1 \approx-0.161{\mkern 1mu} 5 < 0, \\ {h_1}(\sqrt 2 ) = 2{p^2} + 5p - 1 \approx {\mkern 1mu} 0.553{\mkern 1mu} 5 > 0, \\ {{h'}_1}(x) = 4{p^2}{x^3} + 2p(2 - p)x > 0. \end{array} $ |
我们由上述系列等式和不等式, 并结合
引理1.4 设
$ k(x) = \frac{{\sqrt {{x^2}- 1} [-p{x^2} + (1 + p)]}}{{p{x^2} + (1 -p)}} -\arctan (\sqrt {{x^2} -1} ), $ | (1.4) |
则以下结论成立.
(1) 若
(2) 若
证 明 简单计算可得
$ \begin{array}{l} k(1) = 0, \\ k(\sqrt 2 ) = \frac{{1- p}}{{1 + p}}- \frac{\pi }{4}, \\ k'(x) =- \frac{{\sqrt {{x^2} - 1} }}{{{{[p{x^2} + (1-p)]}^2}}}{k_1}(x), \end{array} $ |
其中
$ {k_1}(x) = {p^2}{x^4} + 4p{x^2}-{(1-p)^2}. $ |
(1) 若
$ \begin{array}{l} {k_1}(x) = \frac{1}{{36}}({x^2}-1)({x^2} + 25) > 0, \\ k'(x) < 0, \\ k(x) < k(1) = 0. \end{array} $ |
(2) 若
$ \begin{array}{l} k(\sqrt 2 ) \approx-0.032{\mkern 1mu} 6 < 0, \\ {k_1}(1) = 6p-1 \approx-0.153{\mkern 1mu} 5 < 0\\ {k_1}(\sqrt 2 ) = 3{p^2} + 10p - 1 \approx 0.470{\mkern 1mu} 4 > 0, \\ {{k'}_1}(x) = 4{p^2}{x^3} + 8px > 0. \end{array} $ |
我们由上述系列等式和不等式, 并结合
定理2.1 双向不等式
$ {\alpha _1}Q(a, b) + (1-{\alpha _1})A(a, b) < {S_{QA}}(a, b) < {\beta _1}Q(a, b) + (1-{\beta _1})A(a, b) $ | (2.1) |
对所有
证 明 设
$ \frac{{{S_{QA}}(a, b)-A(a, b)}}{{Q(a, b)-A(a, b)}} = \frac{{{{\rm{e}}^{\frac{{\sqrt {1 + {v^2}} {\rm{arcsinh}}(v)}}{v}-1}} - 1}}{{\sqrt {1 + {v^2}} - 1}}, $ | (2.2) |
$ \mathop {\lim }\limits_{v \to {0^ + }} = \frac{{{{\rm{e}}^{\frac{{\sqrt {1 + {v^2}} {\rm{arcsinh}}(v)}}{v}-1}}-1}}{{\sqrt {1 + {v^2}}-1}} = \frac{2}{3}, $ | (2.3) |
$ \begin{array}{l} \mathop {\lim }\limits_{v \to {1^-}} = \frac{{{{\rm{e}}^{\frac{{\sqrt {1 + {v^2}} {\rm{arcsinh}}(v)}}{v}-1}}-1}}{{\sqrt {1 + {v^2}} - 1}} = \frac{1}{{\rm{e}}}{(1 + \sqrt 2 )^{1 + \sqrt 2 }} - (1 + \sqrt 2 )\\ \;\;\;\;\;\; \approx 0.6747, \end{array} $ | (2.4) |
$ \begin{array}{l} \log \frac{{{S_{QA}}(a, b)}}{{pQ(a, b) + (1- p)A(a, b)}} = \frac{{\sqrt {1 + {v^2}} {\rm{arcsinh}}(v)}}{v}- 1- \log [p\sqrt {1 + {v^2}} + (1-p)]\\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; = \frac{{x{\rm{arcsinh}}(\sqrt {{x^2} - 1} )}}{{\sqrt {{x^2} - 1} }} - 1 - \log [px + (1-p)]. \end{array} $ | (2.5) |
设
$ F(x) = \frac{{x{\rm{arcsinh}}(\sqrt {{x^2}- 1} )}}{{\sqrt {{x^2}- 1} }}- 1 - \log [px + (1-p)]. $ | (2.6) |
简单计算可得
$ F(1) = 0, $ | (2.7) |
$ F(\sqrt 2 ) = (1 + \sqrt 2 )\log (1 + \sqrt 2 )-\log (1 + \sqrt 2 + p)-1, $ | (2.8) |
$ F'(x) = \frac{1}{{{{({x^2}-1)}^{3/2}}}}f(x), $ | (2.9) |
其中
我们分两种情形证明.
情形1 若
$ {S_{QA}}(a, b) > \frac{2}{3}Q(a, b) + \frac{1}{3}A(a, b). $ | (2.10) |
情形2 若
$ F(\sqrt 2 ) = 0. $ | (2.11) |
我们从等式(2.5)-(2.7) 和(2.11), 结合
$ {S_{QA}}\left( {a, b} \right) < {p_1}Q\left( {a, b} \right) + \left( {1-{p_1}} \right)A\left( {a, b} \right). $ | (2.12) |
所以, 我们从等式(2.3)-(2.4) 和不等式(2.10)、(2.12), 并结合不等式(2.1) 等价(2.13) 的事实,容易得到定理2.1,
$ {\alpha _1} < \frac{{{{\rm{e}}^{\frac{{\sqrt {1 + {v^2}} {\rm{arcsinh}}(v)}}{v}-1}}-1}}{{\sqrt {1 + {v^2}}-1}} < {\beta _1}. $ | (2.13) |
定理2.2 双向不等式
$ {\alpha _2}Q(a, b) + (1-{\alpha _2})A(a, b) < {Y_{AQ}}(a, b) < {\beta _2}Q(a, b) + (1-{\beta _2})A(a, b) $ | (2.14) |
对所有
证 明 设
$ \frac{{{S_{AQ}}(a, b)-A(a, b)}}{{Q(a, b)-A(a, b)}} = \frac{{\sqrt {1 + {v^2}} {{\rm{e}}^{\frac{{\arctan (v)}}{v}-1}} - 1}}{{\sqrt {1 + {v^2}} - 1}}, $ | (2.15) |
$ \mathop {\lim }\limits_{v \to {0^ + }} \frac{{\sqrt {1 + {v^2}} {{\rm{e}}^{\frac{{\arctan (v)}}{v}-1}}-1}}{{\sqrt {1 + {v^2}}-1}} = \frac{1}{3}, $ | (2.16) |
$ \mathop {\lim }\limits_{v \to {1^-}} \frac{{\sqrt {1 + {v^2}} {{\rm{e}}^{\frac{{\arctan (v)}}{v}-1}}-1}}{{\sqrt {1 + {v^2}} - 1}} = \frac{{\sqrt 2 {{\rm{e}}^{\frac{\pi }{4} - 1}} - 1}}{{\sqrt 2 - 1}} \approx 0.340{\mkern 1mu} 5, $ | (2.17) |
$ \begin{array}{l} \log \frac{{{S_{AQ}}(a, b)}}{{pQ(a, b) + (1- p)A(a, b)}} = \log \sqrt {1 + {v^2}} + \frac{{\arctan (v)}}{v}- 1- \log [p\sqrt {1 + {v^2}} + (1-p)]\\ = \log x + \frac{{\arctan (\sqrt {{x^2} - 1} )}}{{\sqrt {{x^2} - 1} }} - 1 - \log [px + (1-p)]. \end{array} $ | (2.18) |
设
$ G(x) = \log x + \frac{{\arctan (\sqrt {{x^2}- 1} )}}{{\sqrt {{x^2}- 1} }}- 1 - \log [px + (1-p)]. $ | (2.19) |
简单计算可得
$ G{\rm{(1) = 0, }} $ | (2.20) |
$ G(\sqrt 2 ) = \log \sqrt 2 + \frac{\pi }{4}- 1- \log [(\sqrt 2-1)p + 1], $ | (2.21) |
$ G'(x) = \frac{x}{{{{({x^2}-1)}^{3/2}}}}g(x), $ | (2.22) |
其中
我们分两种情形证明.
情形1 若
$ {S_{AQ}}(a, b) > \frac{1}{3}Q(a, b) + \frac{2}{3}A(a, b). $ | (2.23) |
情形2 若
$ G(\sqrt 2 ) = 0. $ | (2.24) |
从等式(2.18)-(2.20) 和(2.24) 结合
$ {S_{QA}}\left( {a, b} \right) < {p_2}Q\left( {a, b} \right) + \left( {1-{p_2}} \right)A\left( {a, b} \right). $ | (2.25) |
所以, 我们从等式(2.16)-(2.17) 和不等式(2.23)、(2.25), 并结合不等式(2.14) 等价于(2.26) 的事实, 容易得到定理2.2,
$ {\alpha _2} < \frac{{\sqrt {1 + {v^2}} {{\rm{e}}^{\frac{{\arctan (v)}}{v}-1}}-1}}{{\sqrt {1 + {v^2}}-1}} < {\beta _2}. $ | (2.26) |
定理2.3 双向不等式
$ {\alpha _3}C(a, b) + (1-{\alpha _3})A(a, b) < {S_{QA}}(a, b) < {\beta _3}C(a, b) + (1-{\beta _3})A(a, b) $ | (2.27) |
对所有
证 明 不失一般性, 我们不妨设
$ \frac{{{S_{QA}}(a, b)-A(a, b)}}{{C(a, b)-A(a, b)}} = \frac{{{{\rm{e}}^{\frac{{\sqrt {1 + {v^2}} {\rm{arcsinh}}(v)}}{v}-1}} - 1}}{{{v^2}}}, $ | (2.28) |
$ \mathop {\lim }\limits_{v \to {0^ + }} \frac{{{{\rm{e}}^{\frac{{\sqrt {1 + {v^2}} {\rm{arcsinh}}(v)}}{v}-1}}-1}}{{{v^2}}} = \frac{1}{3}, $ | (2.29) |
$ \mathop {\lim }\limits_{x \to {1^-}} \frac{{{{\rm{e}}^{\frac{{\sqrt {1 + {v^2}} {\rm{arcsinh}}(v)}}{v}-1}}-1}}{{{v^2}}} = \frac{{{{(1 + \sqrt 2 )}^{\sqrt 2 }}}}{{\rm{e}}} - 1 \approx 0.279{\mkern 1mu} 4, $ | (2.30) |
$ \begin{array}{l} \log \frac{{{S_{QA}}(a, b)}}{{pC(a, b) + (1- p)A(a, b)}} = \frac{{\sqrt {1 + {v^2}} {\rm{arcsinh}}(v)}}{v}- 1- \log [p(1 + {v^2}) + (1-p)]\\ = \frac{{x{\rm{arcsinh}}(\sqrt {{x^2} - 1} )}}{{\sqrt {{x^2} - 1} }} - 1 - \log [p{x^2} + (1-p)]. \end{array} $ | (2.31) |
设
$ H(x) = \frac{{x{\rm{arcsinh}}(\sqrt {{x^2}- 1} )}}{{\sqrt {{x^2}- 1} }}- 1 - \log [p{x^2} + (1-p)]. $ | (2.32) |
简单计算可得
$ H{\rm{(1) = 0, }} $ | (2.33) |
$ H(\sqrt 2 ) = \sqrt 2 \log (1 + \sqrt 2 )-1-\log (1 + p), $ | (2.34) |
$ H'(x) = \frac{1}{{{{({x^2}-1)}^{3/2}}}}h(x), $ | (2.35) |
其中
我们分两种情形证明.
情形1 若
$ H(\sqrt 2 ) = 0. $ | (2.36) |
从等式(2.31)-(2.33) 和(2.36) 结合
$ {S_{AQ}}(a, b) > [{(1 + \sqrt 2 )^{\sqrt 2 }}/{\rm{e}}-1]C(a, b) + [2-{(1 + \sqrt 2 )^{\sqrt 2 }}/{\rm{e}}]A(a, b). $ | (2.37) |
情形2 若
$ {S_{AQ}}(a, b) < \frac{1}{3}C(a, b) + \frac{2}{3}A(a, b). $ | (2.38) |
所以, 我们从等式(2.29)-(2.30) 和不等式(2.37)、(2.38), 并结合不等式(2.27) 等价于(2.39) 的事实, 容易得到定理2.3,
$ {\alpha _3} < \frac{{{{\rm{e}}^{\frac{{\sqrt {1 + {v^2}} {\rm{arcsinh}}(v)}}{v}-1}}-1}}{{{v^2}}} < {\beta _3}. $ | (2.39) |
定理2.4 双向不等式
$ {\alpha _4}C(a, b) + (1-{\alpha _4})A(a, b) < {S_{AQ}}(a, b) < {\beta _4}C(a, b) + (1-{\beta _4})A(a, b) $ | (2.40) |
对所有
证 明 不失一般性,我们不妨设
$ \frac{{{S_{AQ}}(a, b)-A(a, b)}}{{C(a, b)-A(a, b)}} = \frac{{\sqrt {1 + {v^2}} {{\rm{e}}^{\frac{{\arctan (v)}}{v}-1}} - 1}}{{{v^2}}}, $ | (2.41) |
$ \mathop {\lim }\limits_{v \to {0^ + }} \frac{{\sqrt {1 + {v^2}} {{\rm{e}}^{\frac{{\arctan (v)}}{v}-1}}-1}}{{{v^2}}} = \frac{1}{6}, $ | (2.42) |
$ \mathop {\lim }\limits_{v \to {1^-}} \frac{{\sqrt {1 + {v^2}} {{\rm{e}}^{\frac{{\arctan (v)}}{v}-1}}-1}}{{{v^2}}} = \sqrt 2 {{\rm{e}}^{\frac{\pi }{4} - 1}} - 1 \approx 0.141{\mkern 1mu} 0, $ | (2.43) |
$ \begin{array}{l} \log \frac{{{S_{AQ}}(a, b)}}{{pC(a, b) + (1- p)A(a, b)}} = \log \sqrt {1 + {v^2}} + \frac{{\arctan (v)}}{v}- 1- \log [p(1 + {v^2}) + (1-p)]\\ = \log x + \frac{{\arctan (\sqrt {{x^2} - 1} )}}{{\sqrt {{x^2} - 1} }} - 1 - \log [p{x^2} + (1-p)]. \end{array} $ | (2.44) |
设
$ J(x) = \log x + \frac{{\arctan (\sqrt {{x^2}- 1} )}}{{\sqrt {{x^2}- 1} }}- 1 - \log [p{x^2} + (1-p)]. $ | (2.45) |
简单计算可得
$ J{\rm{(1) = 0, }} $ | (2.46) |
$ J(\sqrt 2 ) = \log \sqrt 2 + \frac{\pi }{4}-1-\log (1 + p), $ | (2.47) |
$ J'(x) = \frac{x}{{{{({x^2}-1)}^{3/2}}}}k(x), $ | (2.48) |
其中
我们分两种情形证明.
情形1
$ J(\sqrt 2 ) = 0. $ | (2.49) |
从等式(2.44)-(2.46) 和(2.49) 结合
$ {S_{AQ}}(a, b) > (\sqrt 2 {{\rm{e}}^{\frac{\pi }{4}-1}}-1)Q(a, b) + (2-\sqrt 2 {{\rm{e}}^{\frac{\pi }{4} - 1}})A(a, b). $ | (2.50) |
情形2 若
$ {S_{AQ}}(a, b) < \frac{1}{6}Q(a, b) + \frac{5}{6}A(a, b). $ | (2.51) |
所以, 我们从等式(2.42)-(2.43) 和不等式(2.50)、(2.51), 并结合不等式(2.40) 等价于(2.52) 的事实, 容易得到定理2.4,
$ {\alpha _4} < \frac{{\sqrt {1 + {v^2}} {{\rm{e}}^{\frac{{{\rm{arctan}}(v)}}{v}-1}}-1}}{{{v^2}}} < {\beta _4}. $ | (2.52) |
[1] | BRENNER J L, CARLSON B C. Homogeneous mean values: Weights and asymptotes[J]. Journal of Mathemat-ical Analysis and Applications, 1987, 123: 265-280. DOI:10.1016/0022-247X(87)90308-8 |
[2] | CARLSON B C. Algorithms involving arithmetic and geometric means[J]. The American Mathematical Monthly, 1971, 78(5): 496-505. DOI:10.2307/2317754 |
[3] | NEUMAN E, SÁNDOR J. On the Schwab-Borchardt mean[J]. Mathematica Pannonica, 2003, 14(2): 253-266. |
[4] | NEUMAN E, SÁNDOR J. On the Schwab-Borchardt mean Ⅱ[J]. Mathematica Pannonica, 2006, 17(1): 49-59. |
[5] | YANG Z H. Three families of two-parameter means constructed by trigonometric functions[J]. Journal of In-equalities and Applications, 2013(1): 1-27. |
[6] | YANG Z H, JIANG Y L, SONG Y Q, et al. Sharp inequalities for trigonometric functions[J]. Abstract and Applied Analysis, 2014, 18: pages |
[7] | YANG Z H, CHU Y M. Optimal evaluations for the Sándor-Yang mean by power mean[J]. Mathematical In-equalities & Applications, 2016, 19(3): 1031-1038. |
[8] | ZHAO T H, QIAN W M, SONG Y Q. Optimal bounds for two Sándor-type means in terms of power means[J]. Journal of Inequalities and Applications, 2016(1): 64 |