文章快速检索     高级检索
  华东师范大学学报(自然科学版)  2018 Issue (2): 11-22  DOI: 10.3969/j.issn.1000-5641.2018.02.002
0

引用本文  

黄商商, 马巧珍. 带线性记忆的阻尼耦合吊桥方程的全局吸引子[J]. 华东师范大学学报(自然科学版), 2018, (2): 11-22. DOI: 10.3969/j.issn.1000-5641.2018.02.002.
HUANG Shang-shang, MA Qiao-zhen. Global attractors for the coupled damped suspension bridge equations with linear memory[J]. Journal of East China Normal University (Natural Science), 2018, (2): 11-22. DOI: 10.3969/j.issn.1000-5641.2018.02.002.

基金项目

国家自然科学基金(11561064,11361053);西北师范大学创新团队基金(NWNU-LKQN-14-6)

第一作者

黄商商, 男, 硕士研究生, 研究方向为无穷维动力系统与常微分方程.E-mail:1376132714@qq.com

通信作者

马巧珍, 女, 博士生导师, 教授, 研究方向为无穷维动力系统与常微分方程.E-mail:maqzh@nwnu.edu.cn

文章历史

收稿日期:2017-02-14
带线性记忆的阻尼耦合吊桥方程的全局吸引子
黄商商, 马巧珍     
西北师范大学 数学与统计学院, 兰州 730070
摘要:本文研究了带线性记忆的阻尼耦合吊桥方程的长时间动力学行为,应用能量估计及收缩函数的方法,获得了弱拓扑空间中全局吸引子的存在性.
关键词耦合吊桥方程    全局吸引子    有界吸收集    线性记忆    
Global attractors for the coupled damped suspension bridge equations with linear memory
HUANG Shang-shang, MA Qiao-zhen    
College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, China
Abstract: In this paper, we investigate the long-time dynamical behavior of coupled suspension bridge equations with linear memory. We obtain the existence of the global attractors in the weak Hilbert space by using methods of energy estimates and contractive function.
Key words: coupled suspension bridge equations    global attractor    bounded absorbing set    linear memory    
0 引言

本文考虑如下带有线性记忆的阻尼耦合吊桥方程解的渐近性:

$ \begin{align} \left\{\!\!\begin{array}{l} u_{tt}+\alpha u_{t}+\Delta^{2} u-\int_{0}^{\infty }\mu_{1}(s) \Delta^{2}u(t-s){\text{d}}s+k(u-v)^{+}+f_1(u)=g_{1}(x), \\ ~(x, t)\in[0, L] \times{\mathbb{R}}^{+}, \\ v_{tt}+\beta v_{t}- \Delta v-\int_{0}^{\infty }\mu_{2}(s)\Delta v(t-s){\text{d}}s-k(u-v)^{+}+f_2(v)=g_{2}(x), \\ ~(x, t)\in[0, L]\times{\mathbb{R}}^{+}, \\ u(0)=\Delta u(0)=u(L)=\Delta u(L)=0, v(0)=v(L)=0, t\geq0, \\ u(x, \tau)=u_{0}(x, \tau), u_{t}(x, \tau)=\partial_{t}u_{0}(x, \tau), ~(x, \tau)\in[0, L]\times(-\infty, 0], \\ v(x, \tau)=v_{0}(x, \tau), v_{t}(x, \tau)=\partial_{t}v_{0}(x, \tau), ~(x, \tau)\in[0, L]\times(-\infty, 0], \end{array} \right. \end{align} $ (0.1)

其中$\Delta^{2}u=u_{xxxx}, -\Delta u=-u_{xx}, $ $\alpha>0, \beta>0$是粘性阻尼, $k>0$是弹性系数, $g_{1}(x)\in L^{2}[0, L], g_{2}(x)\in L^{2}[0, L]$, 函数$(u-v)^{+}=\max\{u-v, 0\}$.

耦合吊桥方程描述了吊桥路面及其主链在竖直平面的运动情况, 由Lazer和McKenna在文献[1]中作为非线性分析中的一个新问题提出, Ahmed和Harbi在文献[2]中研究了这一问题弱解的存在性.马巧珍等人在文献[3-4]中得到了耦合吊桥方程强解和强全局吸引子的存在性, 在文献[5]中则继续讨论了其拉回吸引子的存在性.文献[6]得到了一致吸引子的存在性. Kang等人在文献[7]中研究了强拓扑空间中非自治耦合吊桥方程拉回吸引子的存在性.关于带有记忆项的动力系统, 在文献[8-9]中作者证明了耦合吊桥方程的长时间行为, Pata在文献[10]中研究了带线性记忆的阻尼双曲方程的全局吸引子.进一步, Park和Kang在文献[11]中得到了带非线性阻尼吊桥方程的全局吸引子.最近, 在文献[12]中作者利用收缩函数的方法在强拓扑空间中证明了单个吊桥方程全局吸引子的存在性.受上述文献的启发, 我们研究带双线性记忆的耦合吊桥方程全局吸引子的存在性.与文献[10, 12-13, 17]一样, 我们引入下面表示历史位移的变量

$ \begin{align} \begin{array}{l} \eta=\eta^{t}(x, s)=u(x, t)-u(x, t-s), ~(x, s)\in[0, L]\times{\mathbb{R}}^{+}, ~t\geqslant0, \\ \phi=\phi^{t}(x, s)=v(x, t)-v(x, t-s), ~(x, s)\in[0, L]\times{\mathbb{R}}^{+}, ~t\geqslant0. \end{array} \end{align} $ (0.2)

$ \begin{align} \begin{array}{l} \eta^{t}_{t}(x, s)=-\eta^{t}_{s}(x, s)+u_{t}(x, t), ~(x, s)\in[0, L] \times{\mathbb{R}}^{+}, ~t\geqslant0, \\ \phi^{t}_{t}(x, s)=-\phi^{t}_{s}(x, s)+v_{t}(x, t), ~(x, s)\in[0, L] \times{\mathbb{R}}^{+}, ~t\geqslant0. \end{array} \end{align} $ (0.3)

$Ɫ_{1}=1-\int_{0}^{\infty }\mu_{1}(s){\text{d}}s>0$, $Ɫ_{2}=1-\int_{0}^{\infty }\mu_{2}(s){\text{d}}s>0$, 且$\mu_{1}\in L^{1}({\mathbb{R}}^{+})$, $\mu_{2}\in L^{1}({\mathbb{R}}^{+})$, 则$(0.1)$转化为

$ \begin{align} \left\{\begin{array}{l} u_{tt}+\alpha u_{t}+L_{1}\Delta^ {2}u+\int_{0}^{\infty }\mu_{1}(s)\Delta^{2}\eta^{t}(s){\text{d}}s+k(u-v)^{+}+f_{1}(u)=g_{1}(x), \\~(x, t)\in[0, L]\times{\mathbb{R}}^{+}, \\ v_{tt}+\beta v_{t}- L_{2}\Delta v+\int_{0}^{\infty }\mu_{2}(s)\Delta\phi^{t}(s) {\text{d}}s-k(u-v)^{+}+f_{2}(v)=g_{2}(x), \\ ~(x, t)\in[0, L]\times{\mathbb{R}}^{+}, \\ \eta_{t}=-\eta_{s}+u_{t}, \phi_{t}=-\phi_{s}+v_{t}, ~ (x, t, s)\in[0, L]\times{\mathbb{R}}^{+}\times{\mathbb{R}}^{+}. \end{array} \right. \end{align} $ (0.4)

相应的边值条件为

$ \begin{align} \begin{array}{l} u(0)=\Delta u(0)=u(L)=\Delta u(L)=0, v(0)=v(L)=0, \\ \eta(0)=\Delta \eta(0)=\eta(L)=\Delta \eta(L)=0, \phi(0)=\phi(L)=0 . \end{array} \end{align} $ (0.5)

初值条件为

$ \begin{align} \begin{array}{l} u(x, 0)=u_{0}(x), ~u_{t}(x, 0)=u_{1}(x), ~\eta^{t}(x, 0)=0, ~\eta^{0}(x, s)=\eta_{0}(x, s), \\ v(x, 0)=v_{0}(x), ~v_{t}(x, 0)=v_{1}(x), ~\phi^{t}(x, 0)=0, ~\phi^{0}(x, s)=\phi_{0}(x, s), \end{array} \end{align} $ (6)

其中

$ \begin{align*} \left\{\begin{array}{ll} u_{0}(x)=u_{0}(x, 0), v_{0}(x)=v_{0}(x, 0), x\in[0, L], \\ u_{1}(x)=\partial_{t}u_{0}(x, t)\mid_{t=0}, v_{1}(x)= \partial_{t}v_{0}(x, t)\mid_{t=0}, ~x\in[0, L], \\ \eta_{0}(x, s)=u_{0}(x, 0)-u_{0}(x, -s), \phi_{0}(x, s)=v_{0}(x, 0)-v_{0} (x, -s), \\ (x, s)\in[0, L]\times{\mathbb{R}}^{+}. \end{array} \right. \end{align*} $
1 准备工作

为方便起见, 记$V_{0}=L^{2}[0, L], V_{1}=H^{2}[0, L]\cap H^{1}_{0}[0, L], $$V_{2}= H^{1}_{0}[0, L]$, 并记

$ \begin{align*} H=V_{0}\times V_{0}, V=V_{1}\times V_{2}, \end{align*} $

$(\cdot)$$|\cdot|$分别表示空间$H$的内积与范数, 因此对任意的$u=(u_{1}, u_{2})$, $v=(v_{1}, v_{2})$, 定义

$ \begin{align*} (u, v)=\int_{[0, L]}(u_{1}v_{1}+u_{2}v_{2}){\text{d}}x, ~|u|^{2}_{2}=|u_{1}|^{2}_{2}+|u_{2}|^{2}_{2}. \end{align*} $

同理, $((\cdot, \cdot))$$||\cdot||$分别表示空间$V$的内积与范数, 即

$ \begin{align*} ((u, v))=\int_{[0, L]}(\Delta u_{1}\Delta v_{1}+\nabla u_{2}\nabla v_{2}){\text{d}}x, ~||u||^{2}_{2}=|\Delta u_{1}|^{2}_{2}+|\nabla u_{2}|^{2}_{2}. \end{align*} $

下面, 我们考虑特征值问题

$ \begin{align} \left\{\!\!\begin{array}{l} -\nabla v=\lambda v, ~x\in[0, L], \\ v(0)=v(L)=0, \end{array} \right. \end{align} $ (1.1)

其中$\lambda_{1}$$-\nabla$的第一特征值, 那么

$ \begin{align} \left\{\!\!\begin{array}{l} \Delta^{2} u=\lambda^{2} u, ~x\in[0, L], \\ u(0)=\Delta u(0)=u(L)=\Delta u(L)=0, \end{array} \right. \end{align} $ (1.2)

$\Delta^2$的第一特征值为$\lambda_{1}^{2}$.取$\lambda=\min\{\lambda_{1}, \lambda_{1}^{2}\}$, 利用Poincare不等式, 有$||u||^{2}\geq\lambda|u|^{2}$, $\forall u=(u_{1}, u_{2})\in V_{1}\times V_{2}.$此外, 假设记忆核函数$\mu_{i}(\cdot), i=1, 2$, 满足如下条件:

$(H_{1})~\mu_{i}\in C^{1}({\mathbb{R}}^{+})\cap L^{1}({\mathbb{R}}^{+}), $$\mu_{i}'(s)\leqslant0\leqslant \mu_{i}(s), ~\forall s\in{\mathbb{R}}^{+}$;

$(H_{2})~\int_{0}^{\infty }\mu_{i}(s){\text{d}}s =\mu_{0}>0, ~\forall s\in{\mathbb{R}}^{+}$;

$(H_{3})~\mu_{i}'(s)+\delta\mu_{i}(s)\leqslant0, ~\forall s\in{\mathbb{R}}^{+}, ~\delta>0$.

非线性函数$f_{i}\in C^2({{\mathbb{R}}, {\mathbb{R}}}), i=1, 2, $满足如下假设条件:

$(F_{1})~\liminf\limits_{|s|\rightarrow\infty}\frac{f_{i}(s)}{s} \geqslant\delta, ~\forall ~s\in{\mathbb{R}}$, 其中$\delta>0$;

$(F_{2})~f_i(0)=0, |f_i(u)-f_i(v)|\leqslant k_{0}(1+|u|^{p}+|v|^{p})|u-v|, ~\forall u, v\in{\mathbb{R}}$, 其中$k_{0}>0$$p>0$.

根据记忆核函数$\mu_{i}(\cdot), i=1, 2, $满足的条件, 设$L^{2}_{\mu_{i}}({\mathbb{R}}^{+};V_{i}), i=1, 2, $为定义于${\mathbb{R}}^{+}$上取值于$V_{i}$的一个Hilbert空间, 并且赋予相应的内积和范数:

$ \begin{align*} (u, v)_{\mu, V_{i}}=\int_{0}^{\infty }\mu(r)(u(r), v(r))_{V_{i}} {\text{d}}r, \|u\|_{\mu, V_{i}}^{2}=(u, u)_{\mu, V_{i}}=\int_{0}^{\infty } \mu(r)\|u(r)\|_{V_{i}}^{2}{\text{d}}r. \end{align*} $

定义如下Hilbert空间: ${\mathcal{H}}=V\times H\times L^{2}_{\mu}({\mathbb{R}}^{+}\times{\mathbb{R}}^{+};V)$, 其中$L^{2}_{\mu}({\mathbb{R}}^{+}\times{\mathbb{R}}^{+};V)=L^{2}_ {\mu_{1}}({\mathbb{R}}^{+};H^{2}[0, L]\cap H^{1}_{0}[0, L])$$\times L^{2}_{\mu_{2}}({\mathbb{R}}^{+}; H^{1}_{0}[0, L])$.为了得到问题$(0.4)$--$(0.6)$的全局吸引子, 我们还需要以下结果.

引理1.1[8]  设记忆项$\mu_{i}(s)$满足$(H_{1})$--$(H_{3})$, 非线性项$f_{i}$满足$(F_{1})$--$(F_{2})$, $g_{i}\in L^{2}(0, L), i=1, 2$, 那么

(ⅰ) 若初值$(u_{0}, v_{0}, , u_{1}, v_{1}, \eta_{0}, \phi_{0})\in\mathcal{H}$, 则问题$(0.4)$--$(0.6)$有一个弱解

$ \begin{align*} (u, v, u_{t}, v_{t}, \eta, \phi)\in C([0, T], \mathcal{H}), ~\forall T>0, \end{align*} $

满足

$ \begin{align*} u\in L^{\infty}(0, T;V_{1}), ~u_{t}\in L^{\infty}(0, T;V_{0}), ~\eta\in L^{\infty}(0, T;L^{2}_{\mu_{1}}({\mathbb{R}}^{+}\times{\mathbb{R}}^ {+}, V_{1})), \\[1mm] v\in L^{\infty}(0, T;V_{2}), ~v_{t}\in L^{\infty}(0, T;V_{0}), ~\phi \in L^{\infty}(0, T;L^{2}_{\mu_{2}}({\mathbb{R}}^{+}\times{\mathbb{R}}^{+}, V_{2})). \end{align*} $

(ⅱ) 令$z_{i}=(u^{i}, v^{i}, u_{t}^{i}, v_{t}^{i}, \eta^{i}, \phi^{i})$是问题$(0.4)$--$(0.6)$对应于初值$z_{i}(0)=(u_{0}^{i}, v_{0}^{i}, u_{1}^{i}, v_{1}^{i}, \eta_{0}^{i}, \phi_{0}^{i})$的一个弱解, 则对常数$c>0$, 有

$ \begin{align*} |z_{1}(t)-z_{2}(t)|_{\mathcal{H}}\leqslant {\text{e}}^{ct}|z_{1}(0)-z_{2}(0)|_{\mathcal{H}}, ~t\in[0, T]. \end{align*} $

问题$(0.4)$--$(0.6)$的适定性结果表明, 算子$S(t):\mathcal{H}\rightarrow\mathcal{H}$可定义为

$ \begin{align*} S(t)(u_{0}, v_{0}, u_{1}, v_{1}, \eta_{0}, \phi_{0})=(u(t), v(t), u_{t}(t), v_{t}(t), \eta^{t}, \phi^{t}), ~t\geqslant0, \end{align*} $

其中$(u(t), v(t), u_{t}(t), v_{t}(t), \eta^{t}, \phi(t))$是问题$(0.4)$--$(0.6)$唯一的弱解, 算子$S(t)$满足半群的性质, 且可定义一个在$\mathcal{H}$上局部Lipschitz连续的非线性$C_{0}$-半群.

定义1.2[12]  设$X$为Banach空间, $B$$X$中的有界集, 定义于$X\times X$上的函数$\phi(\cdot, \cdot)$称为$B\times B$上的收缩函数, 如果对于任意的序列$\{x_{n}\}^{\infty}_{n=1}\subset B$, 存在子列$\{x_{n_{k}}\}^{\infty}_{k=1}\subset \{x_{n}\}^{\infty}_{n=1}$, 使得

$ \begin{align} \lim\limits_{k\rightarrow\infty}\lim\limits_{l\rightarrow\infty}\phi(x_{n_{k}}, x_{n_{l}})=0. \end{align} $ (1.3)

${\mathfrak{C}}$表示定义于$B\times B$上的收缩函数的集合.

引理1.3[12]  设$\{S(t)\}_{t\geqslant0}$为Banach空间$(X, \|\cdot\|)$上的半群, 并存在有界吸收集$B_{0}$.进一步, 对任意的$\epsilon>0$, 存在$T=T(B_{0}, \epsilon)$以及$\phi_{T}(\cdot, \cdot)\in{\mathfrak{C}}(B_{0})$, 使得

$ \begin{align*} \|S(T)x-S(T)y\|\leqslant\epsilon+\phi_{T}(x, y), ~\forall(x, y)\in B_{0}, \end{align*} $

其中$\phi_{T}$依赖于$T$.那么$\{S(t)\}_{t\geqslant0}$$X$中渐近紧, 即对于任意的有界序列$\{y_{n}\}^{\infty}_{n=1}\subset X$$\{t_{n}\}$, 当$n\rightarrow\infty, t_{n}\rightarrow\infty$时, $\{S(t_{n})y_{n}\}_{n=1}^{\infty}$$X$中相对紧.

: 一个半群称之为耗散的是指它拥有一个紧的吸收集.

定理1.4[17]  一个耗散的动力系统$(\mathcal{H}, S(t))$有一个紧的全局吸引子当且仅当它是渐近紧的.

本文的主要结果是以下定理.

定理1.5  设记忆项$\mu_{i}(s)$满足 $(H_{1})$--$(H_{3})$, 非线性项$f_{i}$满足$(F_{1})$--$(F_{2})$, $g_{i}\in L^{2}(\Omega), i=1, 2$, 则由问题$(1.4)$--$(1.6)$产生的动力系统$(\mathcal{H}, S(t))$有一个紧的全局吸引子$\mathcal{A}_{\alpha}\subset\mathcal{H}, \alpha\geqslant0$, 且以范数$\|\cdot\|$吸引$\mathcal{H}$中的任意有界集.

2 $\mathcal{H}$空间的全局吸引子

为了证明定理$1.5$, 我们将用到第$1$节中的一些结果.首先需要证明动力系统$(\mathcal{H}, S(t))$是耗散的, 即它有一个有界吸收集; 其次需要证明它的渐近紧性, 从而由定理$1.4$可得其全局吸引子的存在性.

2.1 $\mathcal{H}$中的有界吸收集

首先, 由$(F_{1})$可知, 存在常数$K_{1}, K_{2}, K_{3}, K_{4}>0, \eta=\eta(\delta)>0, \phi=\phi(\delta)>0$, 使得

$ f_{1}(s)s+\eta s^{2}+K_{1}\geqslant0, ~\forall s\in{\mathbb{R}}; $ (2.1)
$ F_{1}(s)+\eta s^{2}+K_{2}\geqslant0, ~\forall s\in{\mathbb{R}}; $ (2.2)
$ f_{2}(s)s+\phi s^{2}+K_{3}\geqslant0, ~\forall s\in{\mathbb{R}}; $ (2.3)
$ F_{2}(s)+\phi s^{2}+K_{4}\geqslant0, ~\forall s\in{\mathbb{R}}, $ (2.4)

其中$F_{i}(u)=\int_{0}^{u}f_{i}(s){\text{d}}s, i=1, 2$.取$0<\sigma<1$, 用$\varphi=u_{t}+\sigma u, ~\psi=v_{t}+\sigma v$$(0.4)$$H$中作内积后得

$ \begin{align} \begin{array}{l} ~~~\dfrac{1}{2}\cdot\dfrac{{\text{d}}}{{\text{d}}t}(L_{1}|\Delta u|^{2}_{2}+|\varphi|^{2}_{2}+|\psi|^{2}_{2}+ L_{2}|\nabla v|^{2}_{2})+\sigma L_{1}|\Delta u|^{2}_{2}\\ +(\alpha-\sigma)|\varphi|^{2}_{2}-\sigma(\alpha-\sigma) (u, \varphi) +\sigma L_{2}\|\nabla v\|^{2}_{2}+(\beta-\sigma)|\psi|^{2}_{2}-\sigma(\beta-\sigma)(v, \psi)\\ +(\eta^{t}, u_{t})_{\mu_{1}, V_{1}}+ \sigma(\eta^{t}, u)_{\mu_{1}, V_{1}}+(\phi^{t}, v_{t})_{\mu_{2}, V_{2}}+\sigma(\phi^{t}, v)_{\mu_{2}, V_{2}}+k((u-v)^{+}, \varphi-\psi)\\ +(f_{1}(u), \varphi)+(f_{2}(v), \psi)=(g_{1}, \varphi)+(g_{2}, \psi). \end{array} \end{align} $ (2.5)

结合$(0.4), (H_{2}), (H_{3})$以及Hölder不等式, 有

$ (\eta^{t}, u_{t})_{\mu_{1}, V_{1}}+(\phi^{t}, v_{t})_{\mu_{2}, V_{2}}\\ = (\eta^{t}, \eta^{t}_{t}+\eta^{t}_{s})_{\mu_{1}, V_{1}}+(\phi^{t}, \phi^{t}_{t}+\phi^{t}_{s})_{\mu_{2}, V_{2}}\\ = \dfrac{1}{2}\cdot\dfrac{{\text{d}}}{{\text{d}}t}| \eta^{t}|^{2}_{\mu_{1}, V_{1}}+\dfrac{1}{2}\dfrac{{\text{d}}} {{\text{d}}t}\|\phi^{t}\|^{2}_{\mu_{2}, V_{2}} +\int_{0}^{\infty }\mu_{1}(s)(\eta^{t}(s), \eta^{t}_{s}(s))_{V_{1}}{\text{d}}s+\\ \int_{0}^{\infty }\mu_{2}(s)(\phi^{t}(s), \phi^{t}_{s} (s))_{V_{2}}{\text{d}}s\\ =\dfrac{1}{2}\cdot\dfrac{{\text{d}}}{{\text{d}}t}| \eta^{t}|^{2}_{\mu_{1}, V_{1}}+\dfrac{1}{2}\int_{0}^{\infty } \mu_{1}(s){\text{d}}|\eta^{t}(s)|^{2}_{V_{1}}+ \dfrac{1}{2}\cdot\dfrac{{\text{d}}}{{\text{d}}t} \|\phi^{t}\|^{2}_{\mu_{2}, V_{2}}+ \dfrac{1}{2}\int_{0}^{\infty }\mu_{1}(s){\text{d}} \|\phi^{t}(s)\|^{2}_{V_{2}}\\ = \dfrac{1}{2}\cdot\dfrac{{\text{d}}}{{\text{d}}t}|\eta^{t}|^ {2}_{\mu_{1}, V_{1}}- \dfrac{1}{2}\int_{0}^{\infty }\mu_{1}'(s)|\eta^{t}(s) |^{2}_{V_{1}}{\text{d}}s +\dfrac{1}{2}\cdot\dfrac{{\text{d}}}{{\text{d}}t} \|\phi^{t}\|^{2}_{\mu_{2}, V_{2}}-\dfrac{1}{2}\int_{0}^{\infty }\mu_{2}'(s)|\phi^{t}(s)|^{2}_{V_{2}}{\text{d}}s \\ \geqslant \dfrac{1}{2}\cdot\dfrac{{\text{d}}}{{\text{d}}t}| \eta^{t}|^{2}_{\mu_{1}, V_{1}}+\dfrac{\delta}{2}\int_{0}^{\infty }\mu_{1}(s)|\eta^{t}(s)|^{2}_{V_{1}}{\text{d}}s+ \dfrac{1}{2}\cdot\dfrac{{\text{d}}}{{\text{d}}t} \|\phi^{t}\|^{2}_{\mu_{2}, V_{2}}+\dfrac{\delta}{2} \int_{0}^{\infty } \mu_{2}(s)\|\phi^{t}(s)\|^{2}_{V_{2}} {\text{d}}s \\ =\dfrac{1}{2}\cdot\dfrac{{\text{d}}}{{\text{d}}t}|\eta^{t}| ^{2}_{\mu_{1}, V_{1}}+\dfrac{\delta}{2}|\eta^{t}|^{2}_{\mu_{1}, V_{1}}+ \dfrac{1}{2}\cdot\dfrac{{\text{d}}}{{\text{d}}t} \|\phi^{t}\|^{2}_{\mu_{2}, V_{2}}+\dfrac{\delta}{2} \|\phi^{t}\|^{2}_{\mu_{2}, V_{2}}, $

$ \begin{align*} \sigma(\eta^{t}, u)_{\mu_{1}, V_{1}}\geqslant- \dfrac{\delta}{4}|\eta^{t}|^{2}_{\mu_{1}, V_{1}}- \dfrac{\mu_{0}\sigma^{2}}{\delta}|\Delta u|^{2}_{2}, \\ \sigma(\phi^{t}, v)_{\mu_{2}, V_{2}}\geqslant- \dfrac{\delta}{4}\|\phi^{t}\|^{2}_{\mu_{2}, V_{2}}- \dfrac{\mu_{0}\sigma^{2}}{\delta}\|\Delta v\|^{2}_{2}. \end{align*} $

从而由式$(2.5)$可得

$ \begin{align} \begin{array}{l} \dfrac{1}{2}\cdot\dfrac{{\text{d}}}{{\text{d}}t}(|L_{1}\Delta u|^{2}_{2}+|\varphi|^{2}_{2}+|\psi|^{2}_{2}+\|L_{2}\nabla v\|^{2}_{2} +|\eta^{t}|^{2}_{\mu_{1}, V_{1}}+\|\phi^{t}\|^{2}_{\mu_{2}, V_{2}})\\ ~~~~~~+\sigma\Big(L_{1}-\dfrac{\mu_{0}\sigma}{\delta}\Big)|\Delta u|^{2}_{2} +(\varepsilon-\sigma)\|\phi\|^{2}_{2}-\sigma (\varepsilon-\sigma)(u, \phi)+\dfrac{\delta}{4} |\eta^{t}|^{2}_{\mu_{1}, V_{1}}\\ ~~~~~~+\sigma\Big(L_{2}-\dfrac{\mu_{0}\sigma}{\delta}\Big)\|\nabla v\|^{2}_{2} +(\beta-\sigma)|\psi|^{2}_{2}-\sigma(\beta-\sigma)(u, \psi)+ \dfrac{\delta}{4}|\psi^{t}|^{2}_{\mu_{2}, V_{2}}\\ ~~~~~~+k((u-v)^{+}, \varphi-\psi) +(f_{1}(u), \varphi)+(f_{2}(v), \psi)\leq(g_{1}, \varphi)+(g_{2}, \psi). \end{array} \end{align} $ (2.6)

取充分小的$\sigma$和充分大的$L_{1}, L_{2}$, 使得

$ \begin{align} L_{1}-\dfrac{\mu_{0}\sigma}{\delta}-\dfrac{\varepsilon \sigma}{2\lambda}\geqslant1-\sigma, ~\dfrac{\alpha}{2}-\sigma\geqslant\dfrac{\alpha}{4}, ~L_{2}-\dfrac{\mu_{0}\sigma}{\delta}- \dfrac{\beta\sigma}{2\lambda}\geqslant1-\sigma, ~\dfrac{\beta}{2}-\sigma\geqslant\dfrac{\beta}{4} . \end{align} $ (2.7)

结合Hölder、Young和Poincare不等式, 有

$ \begin{align} \begin{array}{l} \sigma\Big(L_{1}-\dfrac{\mu_{0}\sigma}{\delta}\Big)| \Delta u|^{2}_{2}+(\alpha-\sigma)|\varphi|^{2}_{2}- \sigma(\alpha-\sigma)(u, \varphi)\\ ~~~+\sigma\Big(L_{2}-\dfrac{\mu_{0}\sigma}{\delta}\Big) \|\nabla v\|^{2}_{2}+(\beta-\sigma)|\psi|^{2}_{2}- \sigma(\beta-\sigma)(v, \psi)\\ \geqslant \sigma\Big(L_{1}-\dfrac{\mu_{0}\sigma}{\delta}\Big) |\Delta u|^{2}_{2}+(\alpha-\sigma)|\varphi|^{2}_{2}- \dfrac{\alpha\sigma}{\sqrt{\lambda}}|\Delta u|_{2}|\varphi|_{2}\\ ~~~+\sigma\Big(L_{2}-\dfrac{\mu_{0}\sigma}{\delta}\Big)\|\nabla v\|^{2}_{2}+(\beta-\sigma)|\psi|^{2}_{2}-\dfrac{\beta\sigma} {\sqrt{\lambda}}\|\nabla v\|_{2}|\psi|_{2} \\ \geqslant \sigma\Big(L_{1}-\dfrac{\mu_{0}\sigma}{\delta}\Big) |\Delta u|^{2}_{2}+(\alpha-\sigma)|\varphi|^{2}_{2}-\Big(\dfrac {\alpha\sigma^{2}}{2\lambda}|\Delta u|^{2}_{2}+ \dfrac{\alpha}{2}|\varphi|^{2}_{2}\Big)\\ ~~~+\sigma\Big(L_{2}-\dfrac{\mu_{0}\sigma}{\delta}\Big) \|\nabla v\|^{2}_{2}+(\beta-\sigma)|\psi|^{2}_{2}-\Big( \dfrac{\beta\sigma^{2}}{2\lambda}\|\nabla v\|^{2}_{2}+ \dfrac{\beta}{2}|\psi|^{2}_{2}\Big)\\ =\sigma\Big(L_{1}-\dfrac{\mu_{0}\sigma}{\delta}- \dfrac{\alpha\sigma}{2\lambda}\Big)|\Delta u|^{2}_{2}+\Big(\dfrac{\alpha}{2}-\sigma\Big)| \varphi|^{2}_{2}+\sigma\Big(L_{2}-\dfrac{\mu_{0}\sigma}{\delta}- \dfrac{\beta\sigma}{2\lambda}\Big)\\ \|\nabla v\|^{2}_{2}+\Big(\dfrac{\beta}{2}-\sigma\Big)\psi|^{2}_{2}\\ \geqslant \sigma(1-\sigma)|\Delta u|^{2}_{2}+\dfrac{\alpha}{4}|\varphi|^{2}_{2}+\sigma(1-\sigma) \|\nabla v\|^{2}_{2}+\dfrac{\beta}{4}|\psi|^{2}_{2}. \end{array} \end{align} $ (2.8)

此外,

$ \begin{align} \begin{array}{l} \displaystyle(f_{1}(u), \varphi)=(f_{1}(u), u_{t}+\sigma u)=\dfrac{{\text{d}}} {{\text{d}}t}\int_{[0, L]}F_{1}(u){\text{d}}x+ \sigma\int_{[0, L]}f_{1}(u)u{\text{d}}x, \\ \displaystyle(f_{2}(v), \psi)=(f_{2}(v), v_{t}+\sigma v)=\frac{{\text{d}}}{{\text{d}}t}\int_{[0, L]} F_{2}(v){\text{d}}x+\sigma\int_{[0, L]}f_{2}(v)v {\text{d}}x. \end{array} \end{align} $ (2.9)

$ \begin{align} (g_{1}, \varphi)=\dfrac{{\text{d}}}{{\text{d}}t}\int_{[0, L]} gu{\text{d}}x+\sigma\int_{[0, L]}g_{1}u{\text{d}}x, ~(g_{2}, \psi)=\dfrac{{\text{d}}}{{\text{d}}t}\int_{[0, L]}g_{2}v{\text{d}}x+\sigma\int_{[0, L]}g_{2}{\text{d}}x, \end{align} $ (2.10)
$ \begin{align} k((u-v)^{+}, \varphi-\psi)=&k((u-v)^{+}, (u-v)_{t})+\sigma k((u-v)^{+}, (u-v))\notag\\ =&\dfrac{1}{2}\cdot\dfrac{{\text{d}}}{dt}(k|(u-v)^{+}|^{2})+\sigma k|(u-v)^{+}|^{2}. \end{align} $ (2.11)

将式$(2.8)$--$(2.11)$代入式$(2.6)$, 整理可得

$ \dfrac{1}{2}\cdot\dfrac{{\text{d}}}{{\text{d}}t}(L_{1}|\Delta u|^{2}_{2}+|\varphi|^{2}_{2}+|\eta^{t}|^{2}_{\mu_{1}, V_{1}} +k|(u-v)^{+}|^{2}_{2}+L_{2}\|\nabla v\|^{2}_{2}+|\psi|^{2}_{2}+ \|\phi^{t}\|^{2}_{\mu_{2}, V_{2}}\notag\\ \ \ \ \ \ \ \ \ \ \ +\!2\int_{[0, L]}F_{1}(u){\text{d}}x\!-\!2 \int_{[0, L]}g _{1}u{\text{d}}x\!+\!2\int_{[0, L]}F_{2}(v){\text{d}}x \!-\!2\int_{[0, L]}g_{2}v{\text{d}}x)\!+\!\sigma(1\!-\!\sigma)\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \|\Delta u\|^{2}_{2} \!+\!\dfrac{\alpha}{4}|\varphi|^{2}_{2}\notag\\ \ \ \ \ \ \ \ \ \ \ +\dfrac{\delta}{4}|\eta^{t}|^{2}_{\mu_{1}, V_{1}}+ \sigma(1-\sigma)\|\nabla v\|^{2}_{2}\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ +\dfrac{\beta}{4}|\psi|^{2}_{2}+\dfrac{\delta}{4}\|\phi^{t}\| ^{2}_{\mu_{2}, V_{2}}+\sigma k|(u-v)^{+}|^{2}_{2}+\sigma\int_{[0, L]}f_{1}(u)u{\text{d}}x\notag\\ \ \ \ \ \ \ \ \ \ \ -\sigma\int_{[0, L]}g_{1}u{\text{d}}x+\sigma\int_{[0, L]} f_{2}(v)v{\text{d}}x-\sigma\int_{[0, L]}g_{2} v{\text{d}}x\leqslant0. $ (2.12)

$\sigma_{0}=\min\{\sigma, \frac{\alpha}{2}, \frac{\delta}{2}, \frac{\beta}{2}, \sigma(1-\sigma)\}$, 令

$ \begin{align} \begin{array}{l} E(t)=L_{1}|\Delta u|^{2}_{2}+|\varphi|^{2}_{2}+|\eta^{t}|^{2}_{\mu_{1}, V_{1}} +k|(u-v)^{+}|^{2}_{2}+L_{2}\|\nabla v\|^{2}_{2}+|\psi|^{2} _{2}+\|\phi^{t}\|^{2}_{\mu_{2}, V_{2}}\\[2mm] \qquad\quad ~ \displaystyle+2\int_{[0, L]}F_{1}(u){\text{d}}x-2\int_{[0, L]} g_{1}u{\text{d}}x+2\int_{[0, L]}F_{2}(v){\text{d}}x -2\int_{[0, L]}g_{2}v{\text{d}}x, \end{array} \end{align} $ (2.13)

$ \begin{align} \begin{array}{l} I(t)=|\Delta u|^{2}_{2}+|\varphi|^{2}_{2} +|\eta^{t}|^{2}_{\mu_{1}, V_{1}}+\|\nabla v\|^{2}_{2}+ |\psi|^{2}_{2}+ \|\phi^{t}\|^{2}_{\mu_{2}, V_{2}}+ k|(u-v)^{+}|^{2}_{2}\\[2mm] \qquad \quad \displaystyle+\int_{[0, L]}f_{1}(u)u{\text{d}}x-\int_{[0, L]} g_{1}u{\text{d}}x +\int_{[0, L]}f_{2}(v)v{\text{d}}x-\int_{[0, L]} g_{2}v{\text{d}}x, \end{array} \end{align} $ (2.14)

从而有

$ \begin{align*} \dfrac{\text{d}}{{\text{d}}t}E(t)+\sigma_{0}I(t)\leqslant0, \end{align*} $

$ \begin{align} \displaystyle E(t)\leqslant-\sigma_{0}\int_{0}^{t}I(\tau) {\text{d}}\tau+E(0), \end{align} $ (2.15)

其中

$ \begin{align} \begin{array}{l} E(0)=Ɫ_{1}|\Delta u_{0}|^{2}_{2}+|u_{1}+\sigma u_{0}|^{2} _{2}+|\eta_{0}|^{2}_{\mu_{1}, V_{1}}\\[2mm] \qquad \quad ~\, \displaystyle+k|(u-v)^{+}_{0}|^{2}_{2}+2\int_{[0, L]} F_{1}(u_{0}){\text{d}}x-2\int_{[0, L]}g_{1}u_{0} {\text{d}}x+L_{2}|\nabla v_{0}\|^{2}_{2}\\[2mm] \qquad \quad ~\, \displaystyle+\|v_{1}+\sigma v_{0}\|^{2}_{2}+\|\phi_{0}\|^{2}_{\mu_{2}, V_{2}}+2 \int_{[0, L]} F_{2}(v_{0}){\text{d}}x-2\int_{[0, L]}g_{2}v_{0} {\text{d}}x. \end{array} \end{align} $ (2.16)

根据$(2.1)$--$(2.4)$$(2.13)$--$(2.14)$, 利用Sobolev紧嵌入定理可得

$ \begin{align} E(t)\geqslant &L_{1}|\Delta u|^{2}_{2}+|\varphi|^{2}_{2}+|\eta^{t}|^{2}_{\mu_{1}, V_{1}}+k|(u-v)^{+}| ^{2}_{2}\\ &-2\int_{[0, L]}(\eta u^{2}+K_{3}){\text{d}}x-\sigma_{0}|u|^{2}_{2}-\dfrac{1}{\sigma_{0}}\|g_{1}\|^{2}_{2}\notag\\ &+L_{2}\|\nabla v\|^{2}_{2} +|\psi|^{2}_{2}+\|\phi^{t}\|^{2}_{\mu_{2}, V_{2}}-2\int_{[0, L]}(\phi v^{2}+K_{4}){\text{d}}x\\ &-\sigma_{0}\|v\|^{2}_{2}-\dfrac{1} {\sigma_{0}}\|g_{2}\|^{2}_{2}\notag\\ \geqslant&\Big(1-\dfrac{k+2\eta+\sigma_{0}}{\lambda}\Big) |\Delta u|^{2}_{2}+|\varphi|^{2}_{2}+|\eta^{t}|^{2}_{\mu_{1}, V_{1}}-M_{1}\notag\\ &+\Big(1-\dfrac{k+2\eta+\sigma_{0}}{\lambda}\Big)\|\nabla v\|^{2}_{2}+|\psi|^{2}_{2}+\|\phi^{t}\|^{2}_{\mu_{2}, V_{2}} -M_{2}, \end{align} $ (2.17)

其中$M_{1}=2K_{3}|[0, L]|+\frac{|g_{1}|^{2}_{2}}{\sigma_{0}}, M_{2}=2K_{4}|[0, L]|+\frac{|g_{2}|^{2}_{2}}{\sigma_{0}}$.类似地,

$ \begin{align} I(t)\geqslant&|\Delta u|^{2}_{2}+|\varphi|^{2}_{2}+|\eta^{t}| ^{2}_{\mu_{1}, V_{1}}+k|(u-v)^{+}|^{2}_{2}+2\int_{[0, L]} f_{1}(u)u{\text{d}}x-2\int_{[0, L]}g_{1}u{\text{d}}x\notag\\ &+\|\nabla v\|^{2}_{2}+|\psi|^{2}_{2}+\|\phi^{t}\|^{2}_{\mu_{2}, V_{2}}+2 \int_{[0, L]}f_{2}(v)v{\text{d}}x-2\int_{[0, L]} g_{2}v{\text{d}}x \notag\\\geqslant & \Big(1-\dfrac{k+2\eta+\sigma_{0}}{\lambda}\Big)| \Delta u|^{2}_{2}+|\varphi|^{2}_{2}+|\eta^{t}|^{2}_ {\mu_{1}, V_{1}}-M_{3}\notag\\ &+\Big(1-\dfrac{k+2\eta+\sigma_{0}}{\lambda}\Big)\|\nabla v\|^{2}_{2}+|\psi|^{2}_{2}+\|\phi^{t}\|^{2}_{\mu_{2}, V_{2}}-M_{4}. \end{align} $ (2.18)

其中$M_{3}=2K_{1}|[0, L]|+\frac{|g_{1}|^{2}_{2}}{\sigma_{0}}, M_{4}=2K_{2}|[0, L]|+\frac{|g_{2}|^{2}_{2}}{\sigma_{0}}$.令$\frac{k+2\eta}{\lambda}<1, \frac{k+2\phi}{\lambda}<1$, 且$0<\sigma_{0}<\lambda-k-2\eta, 0<\sigma_{0}<\lambda-k-2\phi$, 则有

$ \begin{align} 1-\dfrac{k+2\eta+\sigma_{0}}{\lambda}>0, 1-\dfrac{k+2\phi+\sigma_{0}}{\lambda}>0. \end{align} $ (2.19)

结合式$(2.17)$--$(2.19)$, 存在一个常数$C_{1}$使得

$ E(t)\geqslant C_{1}(|\Delta u|^{2}_{2}+|\varphi|^{2}_{2}+|\eta^{t}|^{2}_{\mu_{1}, V_{1}}+\|\nabla v\|^{2}_{2}+|\psi|^{2}_{2}+\|\phi^{t}\|^{2}_{\mu_{2}, V_{2}})-M_{1} -M_{2}, $ (2.20)
$ I(t)\geqslant C_{1}(|\Delta u|^{2}_{2}+|\varphi|^{2}_{2}+|\eta^{t}|^{2}_{\mu_{1}, V_{1}}+\|\nabla v\|^{2}_{2}+|\psi|^{2}_{2}+\|\phi^{t}\|^{2}_{\mu_{2}, V_{2}})-M_{3}-M_{4}, $ (2.21)

故由式$(2.20)$--$(2.21)$和式$(2.15)$可知

$ \begin{align} \begin{array}{l} C_{1}(|\Delta u|^{2}_{2}+|\varphi|^{2}_{2}+|\eta^{t}|^{2}_{\mu_{1}, V_{1}}+\|\nabla v\|^{2}_{2}+|\psi|^{2}_{2}+\|\phi^{t}\|^{2}_{\mu_{2}, V_{2}})-M_{1}-M_{2}\\ \leqslant \!-\!\sigma_{0}\int_{0}^{t}[C_{1}(|\Delta u|^{2}_{2}\!+\!|\varphi|^{2}_{2}\!+\!|\eta^{t}|^{2}_{\mu_{1}, V_{1}}\!+\!\|\nabla v\|^{2}_{2}\!+\!|\psi|^{2}_{2}\!+\!\|\phi^{t}\|^{2}_{\mu_{2}, V_{2}})\!-\!M_{3}\!-\!M_{4}]{\text{d}}t\!+\!E(0). \end{array} \end{align} $ (2.22)

因此, 对$\forall K>\frac{M_{3}+M_{4}}{C_{1}}$, 存在$t_{0}=t_{0}(B)$, 使得

$ \begin{align} |\Delta u(t_{0})|^{2}_{2}+|\varphi(t_{0})|^{2}_{2}+|\eta^{t_{0}}|^{2}_{\mu_{1}, V_{1}}+\|\nabla v(t_{0})\|^{2}_{2}+|\psi(t_{0})|^{2}_{2}+\|\phi^{t_{0}}\|^{2}_{\mu_{2}, V_{2}}\leqslant K. \end{align} $ (2.23)

所以, 如果$u, v$是系统$(0.4)$--$(0.6)$的解, 令$B_{0}=\bigcup_{t\geqslant0}S(t)B$, 其中

$ B\!=\!\{(u_{0}, v_{0}, u_{1}, v_{1}, \eta_{0}, \phi_{0})^{\text{T}}\in\mathcal{H}_{0}:|\Delta u_{0}|^{2}_{2}\!+\!|\varphi_{0}|^{2}_{2}\!+\!|\eta_{0}|^{2}_ {\mu_{1}, V_{1}}\!+\\ \!||\nabla v_{0}\|^{2}_{2}\!+\!|\psi_{0}|^{2} _{2}+ \|\phi_{0}\|^{2}_{\mu_{2}, V_{2}}\leqslant K\}, $

$B_{0}$是半群$\{S(t)\}_{t\geqslant0}$的一个有界吸收集.

定理2.1  假设记忆项$\mu_{i}(s)$满足$(H_{1})$--$(H_{3})$, 非线性项$f_{i}$满足$(F_{1})$--$(F_{2})$, $g_{i}\in L^{2}[0, L], i=1, 2$, 则空间$\mathcal{H}$中以0为中心, $\rho_{1}$为半径的球$B_{0}=B_{\mathcal{H}}(0, \rho_{1})$是问题$(0.4)$--$(0.6)$生成的解半群$\{S(t)\}_{t\geqslant0}$$\mathcal{H}$中的有界吸收集, 即对$\mathcal{H}$中的任意有界集$B$, 存在$t=t_{0}(B)$, 使得当$t\geqslant t_{0}(B)$时, 有$S(t)B\subset B_{0}$.

有界吸收集的存在性意味着对于依赖于有界集$B\subset\mathcal{H}$的初值, 问题$(0.4)$--$(0.6)$的解全局有界, 即, 若$(u, v, u_{t}, v_{t}, \eta, \phi)$是问题$(0.4)$--$(0.6)$在有界集$B$上对应于初值$(u_{0}, v_{0}, u_{1}, v_{1}, \eta_{0}, \phi_{0})$的解, 则

$ \begin{align} \|(u(t), v(t), u_{t}(t), v_{t}(t), \eta^{t}, \phi^{t})\|_{\mathcal{H}}\leqslant C_{B}, ~\forall t\geqslant0, \end{align} $ (2.24)

其中$ C_{B}>0$是依赖于$B$的常数.

2.2 全局吸引子的存在性

引理2.2  在定理$1.5$的假设条件下, 给定一个有界集$B\subset\mathcal{H}$, 令$z_{1}=(u, v, u_{t}, v_{t}, \eta^{t}, \phi^{t}), z_{2}=(x, y, x_{t}, y_{t}, \xi^{t}, \gamma^{t})$是问题$(0.4)$--$(0.6)$$B$上分别满足初值$z_{1}(0)=(u_{0}, v_{0}, u_{1}, v_{1}, \eta_{0}^{t}, \phi_{0}^{t}), z_{2}(0)=$$(x_{0}, y_{0}, x_{1}, y_{1}, \xi_{0}^{t}, \gamma_{0}^{t})$的两个弱解, 则

$ \begin{align} \begin{array}{l} |(z_{1}(t)-z_{2}(t)|^{2}_{\mathcal{H}}\leqslant {\text{e}}^{-\alpha_{2}t}|(z_{1}(0)-z_{2}(0))|^{2}_{\mathcal{H}}\\ \displaystyle+C_{3}\int_{0}^{t}{\text{e}}^{-\alpha_{2}(t-s)} |(u(s)-x(s))+(v(s)-y(s))|^{2}_{2(p+1)}{\text{d}}s, ~\forall t\geqslant0, \end{array} \end{align} $ (2.25)

其中, $\alpha_{2}, C_{3}$是正常数.

证明  给定一个有界集$B\subset\mathcal{H}$.令$w=u-x, \omega=v-y, \zeta=\eta-\xi, $$\vartheta=\phi-\gamma$, 根据$(0.4)$, 可得

$ \begin{align} \left\{\!\!\begin{array}{l} w_{tt}+\alpha w_{t}+L_{1}\Delta^{2}w+\int_{0}^{\infty }\mu_{1}(s)\Delta^{2}\zeta^{t}(s){\text{d}}s+\\ k(u-v)^{+}-k(x-y)^{+}+f_{1}(u)-f_{1}(x)=0, \\ \omega_{tt}+\beta \omega_{t}-L_{2}\nabla^{2}\omega+\int_{0}^{\infty }\mu_{2}(s)\Delta^{2}\vartheta^{t}(s){\text{d}} s\\ -k(u-v)^{+}+k(x-y)^{+}+f_{2}(v)-f_{2}(y)=0, \\ \zeta_{t}=-\zeta_{s}+w_{t}, \vartheta_{t}=- \vartheta_{s}+\omega_{t}. \end{array} \right. \end{align} $ (2.26)

相应的初值条件为

$ w(0)=u_{0}-x_{0}, ~w_{t}(0)=u_{1}-x_{1}, ~\zeta^{0}=\eta_{0}-\xi_{0}, \omega(0)=v_{0}-y_{0}, ~\omega_{t}(0)=v_{1}-y_{1}, \\ ~\vartheta^{0}=\phi_{0}-\gamma_{0}. $

$\varsigma_{1}=w_{t}+\sigma w, \varsigma_{2}=\omega_{t}+\sigma \omega$分别与$(3.26)$$H$上作内积, 可得

$ \begin{align} \dfrac{1}{2}\cdot\dfrac{{\text{d}}}{{\text{d}}t}& (L_{1}|\Delta w|^{2}_{2}+L_{2}\|\nabla \omega\|^{2}_{2}+ |\varsigma_{1}|^{2}_{2}+\|\varsigma_{2}\|^{2}_{2})+\\ &\sigma L_{1}|\Delta w|^{2}_{2}+\sigma L_{2}\|\nabla\omega\|^{2}_{2}+ (\alpha-\sigma)(w_{t}, \varsigma_{1})\notag\\ &+(\beta-\sigma)(\omega_{t}, \varsigma_{2}) +(\zeta^{t}, w_{t})_{\mu_{1}, V_{1}}\\ &+\sigma(\zeta^{t}, w)_{\mu_{1}, V_{1}}+(\vartheta^{t}, \omega_{t})_{\mu_{2}, V_{2}} +\sigma(\vartheta^{t}, \omega)_{\mu_{2}, V_{2}}\notag\\ &+(k(u-v)^{+}-k(x-y)^{+}, \varsigma_{1})-(k(u-v)^{+}-k(x-y)^{+}, \varsigma_{2})\notag\\ &+(f_{1}(u)-f_{1}(x), \varsigma_{1})+(f_{2}(v)-f_{2}(y), \varsigma_{2})=0. \end{align} $ (2.27)

类似前面的讨论, 我们有

$ \begin{align*} (\alpha-\sigma)(w_{t}, \varsigma_{1})\!=\!(\alpha\!-\!\sigma) |\varsigma_{1}|^{2}_{2}\!-\!\sigma(\alpha\!-\!\sigma)(w, \varsigma_{1}), (\beta\!-\!\sigma)(\omega_{t}, \varsigma_{2})\!=\!(\beta\!-\!\sigma) \|\varsigma_{2}\|^{2}_{2}\!-\!\sigma(\beta\!-\!\sigma)(\omega, \varsigma_{2}) \end{align*} $

$ \begin{align*} (\zeta^{t}, w_{t})_{\mu_{1}, V_{1}}\geqslant\dfrac{1}{2}\cdot \dfrac{{\text{d}}}{{\text{d}}t}|\zeta^{t}|^{2}_{\mu_{1}, V_{1}} +\dfrac{\delta}{2}|\zeta^{t}|^{2}_{\mu_{1}, V_{1}}, (\vartheta^{t}, \omega_{t})_{\mu_{2}, V_{2}}\geqslant\dfrac{1}{2}\cdot \dfrac{{\text{d}}}{{\text{d}}t}\|\vartheta^{t}\|^{2}_{\mu_{2}, V_{2}}+\dfrac{\delta}{2}\|\vartheta^{t}\|^{2}_{\mu_{2}, V_{2}} \end{align*} $

$ \begin{align*} \sigma(\zeta^{t}, w)_{\mu_{1}, V_{1}}\geqslant-\dfrac {\delta}{4}|\zeta^{t}|^{2}_{\mu_{1}, V_{1}}-\dfrac{\mu_{0} \sigma^{2}}{\delta}|\Delta w|^{2}_{2}, \sigma(\vartheta^{t}, \omega)_{\mu_{2}, V_{2}} \geqslant-\dfrac{\delta}{4}\|\vartheta^{t}\|^{2}_{\mu_{2}, V_{2}}-\dfrac{\mu_{0}\sigma^{2}}{\delta}\|\nabla \omega\|^{2}_{2}. \end{align*} $

进一步, 类似式(2.8)的估计, 可得

$ \begin{align} &\sigma\Big(1-\dfrac{\mu_{0}\sigma}{\delta}\Big)|\Delta w|^{2}_ {2}+(\alpha-\sigma)|\varsigma_{1}|^{2}_{2}-\sigma(\alpha- \sigma)(w, \varsigma_{1})+\sigma\Big(1-\dfrac{\mu_{0}\sigma} {\delta}\Big)\|\nabla \omega\|^{2}_{2}\notag\\ &+\!(\beta\!-\!\sigma)\|\varsigma_{2}\|^{2}_{2}\!-\!\sigma(\beta\!-\! \sigma)(\omega, \varsigma_{2}) \geqslant\sigma(1\!-\!\sigma)|\triangle w|^{2}_{2}\!+\!\dfrac{\alpha}{4}|\varsigma_{1}|^{2}_{2}\!+\! \sigma(1\!-\!\sigma)\|\nabla \omega\|^{2}_{2}\!+\!\dfrac{\beta}{4}\|\varsigma_{2}\|^{2}_{2}. \end{align} $ (2.28)

从而由式$(2.27)$

$ \begin{align} \dfrac{1}{2}\cdot\dfrac{{\text{d}}}{{\text{d}}t}& (|\Delta w|^{2}_{2}+|\varsigma_{1}|^{2}_{2}+|\zeta^{t}|^ {2}_{\mu_{1}, V_{1}}+\|\nabla \omega\|^{2}_{2}+\|\varsigma_{2} \|^{2}_{2}+\|\vartheta^{t}\|^{2}_{\mu_{2}, V_{2}})\notag\\ &\quad \, +\sigma(1-\sigma)|\Delta w|^{2}_{2}+\dfrac{\alpha}{4}| \varsigma_{1}|^{2}_{2}+\dfrac{\delta}{4}|\zeta^{t}|^{2}_ {\mu_{1}, V_{1}}+\sigma(1-\sigma)\\ &\|\nabla \omega\|^{2}_{2}+ \dfrac{\beta}{4}\|\varsigma_{2}\|^{2}_{2}+\dfrac{\delta}{4} \|\vartheta^{t}\|^{2}_{\mu_{2}, V_{2}}\notag\\ &=-(k(u-v)^{+}-k(x-y)^{+}, \varsigma_{1})+(k(u-v)^{+}-k(x-y)^{+}, \varsigma_{2})\notag\\& \quad \, -(f_{1}(u)-f_{1}(x), \varsigma_{1})-(f_{2}(v)-f_{2}(y), \varsigma _{2}).\end{align} $ (2.29)

根据Young不等式和Poincare不等式, 有

$ \begin{align} |\!-\!(k(u-v)^{\!+\!}\!-\!k(x-y)^{\!+\!}, \varsigma_{1})|\!=\! &\Big|-\int_ {\Omega} (k(u-v)^{+}-k(x-y)^{+})(w_{t}+\sigma w){\text{d}}x\Big|\notag\\ \leqslant\!&\int_{\Omega} (k(u\!-\!v)^{+}\!-\!k(x\!-\!y)^{+})w_{t}{\text{d}}x\!+\!\\ & \int_{\Omega} (k(u\!-\!v)^{+}\!-\!k(x\!-\!y)^{+})\\ &\sigma w{\text{d}}x\notag\\ \leqslant & \dfrac{k^{2}}{\delta_{0}}|((u-v)^{+}-(x-y)^{+})|^{2}_{2}+ \dfrac{\delta_{0}}{4}|w_{t}|^{2}_{2}+\sigma k|w|^{2}_{2}\notag\\ \leqslant&\dfrac{k^{2}c_{0}}{\delta_{0}}|w|^{2}_{2(p+1)}+ \dfrac{\delta_{0}}{4}|\varsigma_{1}|_{2}^{2}+\Big(\dfrac{ \delta_{0}}{4\lambda}+\dfrac{\sigma k}{\lambda}\Big)|\Delta w|^{2}_{2}. \end{align} $ (2.30)

同理可得

$ \begin{align} |(k(u-v)^{+}-k(x-y)^{+}), \varsigma_{2})|\leqslant\dfrac {k^{2}c_{0}}{\delta_{0}}\|\omega\|^{2}_{2(p+1)}+ \dfrac{\delta_{0}}{4}\|\varsigma_{2}\|_{2}^{2}+\Big(\dfrac {\delta_{0}}{4\lambda}+\dfrac{\sigma k}{\lambda}\Big)\|\nabla \omega\|^{2}_{2}. \end{align} $ (2.31)

事实上, $|(u-v)^{+}-(x-y)^{+}|\leqslant C|(u-v)-(x-y)|, $ $|w_{t}|_{2}^{2}=\varsigma_{1}-\sigma w|_{2}^{2}\leq|\varsigma_{1}|_{2}^{2}+\sigma^{2}|w|_{2}^{2}, \|\omega_{t}\|_{2}^{2}=$ $\|\varsigma_{2}-\sigma \omega\|_{2}^{2}\leq\|\varsigma_{2}\|_{2}^{2}+\sigma^{2} \|\omega\|_{2}^{2}$$c_{0}>0$是由嵌入$L^{2(p+1)}(\Omega)\hookrightarrow L^{2}(\Omega)$产生的常数.

利用Hölder不等式$(\frac{p}{2(p+1)}+\frac{1}{2(p+1)}+ \frac{1}{2}=1)$, 结合条件$(F_{2})$, 估计式$(2.24)$和Yöung不等式可得

$ \begin{align} |-(f_{1}(u)-f_{1}(x), \varsigma_{1})|=&\Big|-\int_{\Omega} (f_{1}(u)-f_{1}(x))(w_{t}+\sigma w){\text{d}}x\Big|\notag\\ \leqslant & k_{0}\int_{\Omega}(1+|u|^{p}+|x|^{p})|w||w_{t}+\sigma w|{\text{d}}x\notag\\ \leqslant&k_{0}\Big(|\Omega|^{\frac{p}{2(p+1)}}+|u|^{p}_{2(p+1)}+ |x|^{p}_{2(p+1)}\Big)|w|_{2(p+1)}(|w_{t}|_{2}+|\sigma w|_{2})\notag\\ \leqslant&C_{B}|w|_{2(p+1)}|w_{t}|_{2}+C_{B}|w|_{2(p+1)}| \sigma w|_{2}\notag\\ \leqslant &\dfrac{2C_{B}^{2}}{\delta_{0}}|w|_{2(p+1)}^{2}+ \dfrac{\delta_{0}}{4}|w_{t}|^{2}_{2}+ \dfrac{\delta_{0}\sigma^{2}}{4}|w|^{2}_{2}\notag\\ \leqslant &\dfrac{2C_{B}^{2}}{\delta_{0}}|w|_{2(p+1)}^{2}+ \dfrac{\delta_{0}}{4}|\varsigma_{1}|_{2}^{2}+ \dfrac{\delta_{0}\sigma^{2}}{2\lambda} |\triangle w|^{2}_{2}. \end{align} $ (2.32)

同理可得

$ \begin{align} |-(f_{2}(v)-f_{2}(y), \varsigma_{2})|\leqslant\dfrac{2C_{B} ^{2}}{\delta_{0}}\|\omega\|_{2(p+1)}^{2}+ \dfrac{\delta_{0}}{4}\|\varsigma_{2}||_{2}^{2}+ \dfrac{\delta_{0}\sigma^{2}}{2\lambda} \|\nabla \omega\|^{2}_{2}. \end{align} $ (2.33)

将式$(2.30)$--$(2.33)$代入式$(2.29)$, 整理得

$ \begin{align} \dfrac{{\text{d}}}{{\text{d}}t}&(|\Delta w|^{2}_{2}+ |\varsigma_{1}|^{2}_{2}+|\zeta^{t}|^{2}_{\mu_{1}, V_{1}}+\|\nabla \omega\|^{2}_{2}+\|\varsigma_{2}\| ^{2}_{2}+\|\vartheta^{t}\|^{2}_{\mu_{2}, V_{2}})\notag\\ &+\Big(2\sigma(1-\sigma)-\dfrac{\delta_{0}}{\sqrt{\lambda}} -\dfrac{2\sigma}{\lambda}\Big(k+\dfrac{\delta_{0}\sigma}{4}\Big) \Big)(|\Delta w|^{2}_{2}+\|\nabla\omega\|_{2}^{2})\notag\\ &\!+\!\dfrac{\alpha}{2}|\varsigma_{1}|^{2}_{2}\!+\! \dfrac{\delta}{2}|\zeta^{t}|^{2}_{\mu_{1}, V_{1}} \!+\!\dfrac{\beta}{2}\|\varsigma_{2}\|^{2}_{2}\!+\! \dfrac{\delta}{2}\|\vartheta^{t}\|^{2}_{\mu_{2}, V_{2}} \leqslant \Big(\dfrac{2k^{2}c_{0}}{\delta_{0}}\!+\!\dfrac{4C_{B}^{2}} {\delta_{0}}\Big)\\ &(|w|^{2}_{2(p\!+\!1)}\!+\!\|\omega\|^{2}_{2(p\!+\!1)}). \end{align} $ (2.34)

取足够小的$\delta_{0}$, 使

$ \begin{align*} 2\sigma(1-\sigma)-\dfrac{\delta_{0}}{\sqrt{\lambda}} -\dfrac{2\sigma}{\lambda}\Big(k+\dfrac{\delta_{0}\sigma}{4}\Big) >0. \end{align*} $

$\alpha_{2}=\min\{2\sigma(1-\sigma)-\frac{\delta_{0}} {\sqrt{\lambda}} -\frac{2\sigma}{\lambda}(k+\frac{\delta_{0}\sigma}{4}), \frac{\alpha}{2}, \frac{\delta}{2}\}, $$~C_{3}=\frac{2k^{2}c_{0}}{\delta_{0}}+\frac{4C_{B}^{2}} {\delta_{0}}.$

定义如下泛函:

$ \begin{align*} E(t)=|\Delta w|^{2}_{2}+|\varsigma_{1}|^{2}_{2}+|\zeta^{t}|^{2}_{\mu, V}+\|\nabla \omega\|^{2}_{2}+\|\varsigma_{2}\|^{2}_{2}+\|\vartheta^{t}\|^{2}_{\mu_{2}, V}, \end{align*} $

$ \begin{align*} \dfrac{{\text{d}}}{{\text{d}}t}E(t)+\alpha_{2}E(t)\leqslant C_{3}(|w|^{2}_{2(p+1)}+\|\omega\|^{2}_{2(p+1)}). \end{align*} $

根据Gronwall引理, 可知

$ \begin{align*} E(t)\leqslant {\text{e}}^{-\alpha_{2}t}E(0)+C_{3}\int_{0}^{t}{\text{e}}^{-\alpha_{2}(t-s)} (|w|^{2}_{2(p+1)}+\|\omega\|^{2}_{2(p+1)}){\text{d}}s. \end{align*} $

由于$E(t)\geqslant|(z_{1}(t)-z_{2}(t)+z_{3}(t)- z_{4}(t))|^{2}_{\mathcal{H}}$, 故可得式$(2.25)$.

引理2.3  在定理$2.6$的假设条件下, 问题(0.4)--(0.6)生成的动力系统$(\mathcal{H}, S(t))$渐近紧.

证明  令$B$$\mathcal{H}$上关于$S(t)$的一个正不变有界子集, 记$C_{B}$为仅依赖于$B$的常数.对于$z_{1}, z_{2}\in B$, $S(t)z_{1}=(u(t), v(t), u_{t}(t), v_{t}(t), \eta^{t}, \phi^{t}), $$S(t)z_{2}=(x(t), y(t), x_{t}(t), y_{t}(t), \xi^{t}, \gamma^{t})$$(0.4)$--$(0.6)$的解.则给定一个$\epsilon>0$, 根据式$(2.25)$, 存在一个$T>0$使得

$ \begin{align} |(S(t)z_{1}-S(t)z_{2}|_{\mathcal{H}} \leqslant\epsilon+C_{B}\Big(\int_{0}^{T}|(u(s)-x(s)) +(v(s)-y(s))|^{2}_{2(p+1)}{\text{d}}s\Big)^{\frac{1}{2}}. \end{align} $ (2.35)

由于$p>0$, 从而$2<2(p+1)<\infty$.取$\theta=\frac{1}{2}(1-\frac{1}{p+1})$, 利用Gagliardo-Nirenberg不等式可得

$ \begin{align*} |(u(t)-x(t))+&(v(t)-y(t))|_{2(p+1)}\\[1mm] &\leqslant C|\Delta(u(t)-x(t))+\nabla(v(t)-y(t))|_{2}^ {\theta}\cdot|(u(t)-x(t))+(v(t)-y(t))|^{1-\theta}_{2}\\[1mm]& \leqslant C_{B}|(u(t)-x(t))+(v(t)-y(t))|^{1-\theta}_{2}. \end{align*} $

由于$|\Delta u(t)|_{2}^{2}, |\triangle x(t)|_{2}^{2}$$\|\nabla v(t)\|_{2}^{2}, \|\nabla y(t)\|_{2}^{2}$一致有界, 故存在一个常数$C_{B}>0$使得

$ \begin{align} |(u(t)-x(t))+(v(t)-y(t))|_{2(p+1)}^{2}\leqslant C_{B}|(u(t)-x(t))+(v(t)-y(t))|^{2(1-\theta)}_{2}. \end{align} $ (2.36)

根据式$(2.35)$和式$(2.36)$, 有

$ \begin{align*} |(S(t)z_{1}-S(t)z_{2})|_{\mathcal{H}} \leqslant\epsilon+\rho_{T}(z_{1}, z_{2}), \end{align*} $

其中

$ \begin{align*} \rho_{T}(z_{1}, z_{2})=C_{B}\Big(\int_{0}^{T}|(u(s)- x(s))+(v(s)-y(s))|^{2(1-\theta)}_{2}{\text{d}}s\Big) ^{\frac{1}{2}}. \end{align*} $

下证$\rho_{T}\in\mathfrak{C}$, 即$\rho_{T}$满足$(1.1)$.

给定一个序列$(z^{n}_{0})=(u^{n}_{0}, v^{n}_{0}, u^{n}_{1}, v^{n}_{1}\eta^{n}_{0}, \phi^{n}_{0})\in B$, 令$S(t)(z^{n}_{0})=(u^{n}(t), v^{n}(t), u^{n}_{t}(t), v^{n}_{t}(t), $ $\eta^{n, t}, \phi^{n, t})$.由于当$t\geqslant0$时, $B$关于$S(t)$正不变, 从而序列$(u^{n}(t), v^{n}(t), u^{n}_{t}(t), v^{n}_{t}(t), \eta^{n, t}, \phi^{n, t})$$\mathcal{H}$上一致有界.另一方面, $(u^{n}, v^{n}, u^{n}_{t}, v^{n}_{t})$$C([0, T], V\times H)$中有界.

由紧嵌入$V\subset H$, 存在一个子列$(u^{n_{k}})$$C([0, T], H)$中强收敛.因此

$ \begin{align*} \lim\limits_{k\rightarrow\infty}\lim\limits_ {l\rightarrow\infty}\int_{0}^{T}|u^{n_{k}}(s) -u^{n_{l}}(s)|^{2(1-\theta)}_{2}{\text{d}}s=0. \end{align*} $

$(1.1)$成立.结论得证.

定理1.5的证明  由定理$2.1$和引理$2.3$可知, $(\mathcal{H}, S(t))$是耗散的动力系统且渐近紧, 从而根据定理$1.4$, 它有一个紧的全局吸引子$\mathcal{A}_{\alpha}\subset\mathcal{H}, \alpha\geqslant0$, 且以范数$|\cdot|$吸引$\mathcal{H}$中的任意有界集.

参考文献
[1] LAZER A C, MCKENNA P J. Large-amplitude periodic oscillations in suspension bridge:Some new connections with nonlinear analysis[J]. Society for Industrial and Applied Mathematics Review, 1990, 32: 537-578.
[2] AHMED N U, HARBI H. Mathematical analysis of dynamic models of suspension bridges[J]. SIAM Journal on Applied Mathematics, 1998, 58(3): 853-874. DOI:10.1137/S0036139996308698
[3] MA Q Z, ZHONG C K. Existence of global attractors for the coupled system of suspension bridge equations[J]. Journal of Mathematical Analysis and Applications, 2005, 308: 365-379. DOI:10.1016/j.jmaa.2005.01.036
[4] MA Q Z, ZHONG C K. Existence of strong solutions and global attractors for the coupled suspension bridge equations[J]. Journal of Differential Equations, 2009, 246: 3755-3775. DOI:10.1016/j.jde.2009.02.022
[5] MA Q Z, WANG B L. pullback attractors for the coupled suspension bridge equations[J]. Electronic Journal of Differential Equations, 2011, 2011(16): 1-10.
[6] MA Q Z, WANG S P, CHEN X B. Uniform compact for the coupled suspension bridge equation[J]. Mathematics, 2011, 217(14): 6604-6615.
[7] KANG J R. Pullback attractors for the non-autonomous coupled suspension bridge equations[J]. Mathematics and Computation, 2013, 219: 8747-8758. DOI:10.1016/j.amc.2013.02.047
[8] KANG J R. Long-time behavior of a suspension bridge equations with past history[J]. Applied Mathematics and Computation, 2015, 265: 509-519. DOI:10.1016/j.amc.2015.04.116
[9] CHUESHOV I, LASIECKA I. Von Karman Evolution Equations:Well-posedness and Long-Time Dynamics[M]. New York: Springer, 2010.
[10] PATA V, ZUCCHI A. Attractors for a damped hyperbolic equation with linear memory[J]. Advances in Mathematical Sciences and Applications, 2001, 2: 505-529.
[11] PARK J Y, KANG J R. Global attractor for suspension bridge equation with nonlinear damping[J]. Quarterly Applied Mathematics, 2011, 69: 465-475. DOI:10.1090/qam/2011-69-03
[12] 刘世芳, 马巧珍. 具有历史记忆的阻尼吊桥方程强全局吸引子的存在性[J]. 数学物理学报, 2017, 37A(4): 684-697.
[13] GIORGI C, RIVERA J E M, PATA V. Global attractors for a semilinear hyperbolic equation in viscoelasticity[J]. Journal of Applied Mathematics and Computation, 2001, 260: 83-99.
[14] PARK J Y, KANG J R. Pullback D-attractors for non-autonomous suspension bridge equations[J]. Nonlinear Analysis, 2009, 71: 4618-4623. DOI:10.1016/j.na.2009.03.025
[15] ZHONG C K, MA Q Z, SUN C Y. Existence of strong solutions and global attractors for the suspension bridge equations[J]. Nonlinear Analysis, 2007, 67: 442-454. DOI:10.1016/j.na.2006.05.018
[16] ROBINSON J C. Infinite-Dimensional Dynamical Systems, An Introduction to Dissipative Parabolic PDEs and The Theory of Global Attractors[M]. London: Cambridge University Press, 2001.
[17] FABRIZIO M, GIORGI C, PATA V. A new approach to equations with memory[J]. Archive Ration Mechanics and Analysis, 2010, 198: 189-232. DOI:10.1007/s00205-010-0300-3