本文考虑如下带有线性记忆的阻尼耦合吊桥方程解的渐近性:
$ \begin{align} \left\{\!\!\begin{array}{l} u_{tt}+\alpha u_{t}+\Delta^{2} u-\int_{0}^{\infty }\mu_{1}(s) \Delta^{2}u(t-s){\text{d}}s+k(u-v)^{+}+f_1(u)=g_{1}(x), \\ ~(x, t)\in[0, L] \times{\mathbb{R}}^{+}, \\ v_{tt}+\beta v_{t}- \Delta v-\int_{0}^{\infty }\mu_{2}(s)\Delta v(t-s){\text{d}}s-k(u-v)^{+}+f_2(v)=g_{2}(x), \\ ~(x, t)\in[0, L]\times{\mathbb{R}}^{+}, \\ u(0)=\Delta u(0)=u(L)=\Delta u(L)=0, v(0)=v(L)=0, t\geq0, \\ u(x, \tau)=u_{0}(x, \tau), u_{t}(x, \tau)=\partial_{t}u_{0}(x, \tau), ~(x, \tau)\in[0, L]\times(-\infty, 0], \\ v(x, \tau)=v_{0}(x, \tau), v_{t}(x, \tau)=\partial_{t}v_{0}(x, \tau), ~(x, \tau)\in[0, L]\times(-\infty, 0], \end{array} \right. \end{align} $ | (0.1) |
其中
耦合吊桥方程描述了吊桥路面及其主链在竖直平面的运动情况, 由Lazer和McKenna在文献[1]中作为非线性分析中的一个新问题提出, Ahmed和Harbi在文献[2]中研究了这一问题弱解的存在性.马巧珍等人在文献[3-4]中得到了耦合吊桥方程强解和强全局吸引子的存在性, 在文献[5]中则继续讨论了其拉回吸引子的存在性.文献[6]得到了一致吸引子的存在性. Kang等人在文献[7]中研究了强拓扑空间中非自治耦合吊桥方程拉回吸引子的存在性.关于带有记忆项的动力系统, 在文献[8-9]中作者证明了耦合吊桥方程的长时间行为, Pata在文献[10]中研究了带线性记忆的阻尼双曲方程的全局吸引子.进一步, Park和Kang在文献[11]中得到了带非线性阻尼吊桥方程的全局吸引子.最近, 在文献[12]中作者利用收缩函数的方法在强拓扑空间中证明了单个吊桥方程全局吸引子的存在性.受上述文献的启发, 我们研究带双线性记忆的耦合吊桥方程全局吸引子的存在性.与文献[10, 12-13, 17]一样, 我们引入下面表示历史位移的变量
$ \begin{align} \begin{array}{l} \eta=\eta^{t}(x, s)=u(x, t)-u(x, t-s), ~(x, s)\in[0, L]\times{\mathbb{R}}^{+}, ~t\geqslant0, \\ \phi=\phi^{t}(x, s)=v(x, t)-v(x, t-s), ~(x, s)\in[0, L]\times{\mathbb{R}}^{+}, ~t\geqslant0. \end{array} \end{align} $ | (0.2) |
则
$ \begin{align} \begin{array}{l} \eta^{t}_{t}(x, s)=-\eta^{t}_{s}(x, s)+u_{t}(x, t), ~(x, s)\in[0, L] \times{\mathbb{R}}^{+}, ~t\geqslant0, \\ \phi^{t}_{t}(x, s)=-\phi^{t}_{s}(x, s)+v_{t}(x, t), ~(x, s)\in[0, L] \times{\mathbb{R}}^{+}, ~t\geqslant0. \end{array} \end{align} $ | (0.3) |
令
$ \begin{align} \left\{\begin{array}{l} u_{tt}+\alpha u_{t}+L_{1}\Delta^ {2}u+\int_{0}^{\infty }\mu_{1}(s)\Delta^{2}\eta^{t}(s){\text{d}}s+k(u-v)^{+}+f_{1}(u)=g_{1}(x), \\~(x, t)\in[0, L]\times{\mathbb{R}}^{+}, \\ v_{tt}+\beta v_{t}- L_{2}\Delta v+\int_{0}^{\infty }\mu_{2}(s)\Delta\phi^{t}(s) {\text{d}}s-k(u-v)^{+}+f_{2}(v)=g_{2}(x), \\ ~(x, t)\in[0, L]\times{\mathbb{R}}^{+}, \\ \eta_{t}=-\eta_{s}+u_{t}, \phi_{t}=-\phi_{s}+v_{t}, ~ (x, t, s)\in[0, L]\times{\mathbb{R}}^{+}\times{\mathbb{R}}^{+}. \end{array} \right. \end{align} $ | (0.4) |
相应的边值条件为
$ \begin{align} \begin{array}{l} u(0)=\Delta u(0)=u(L)=\Delta u(L)=0, v(0)=v(L)=0, \\ \eta(0)=\Delta \eta(0)=\eta(L)=\Delta \eta(L)=0, \phi(0)=\phi(L)=0 . \end{array} \end{align} $ | (0.5) |
初值条件为
$ \begin{align} \begin{array}{l} u(x, 0)=u_{0}(x), ~u_{t}(x, 0)=u_{1}(x), ~\eta^{t}(x, 0)=0, ~\eta^{0}(x, s)=\eta_{0}(x, s), \\ v(x, 0)=v_{0}(x), ~v_{t}(x, 0)=v_{1}(x), ~\phi^{t}(x, 0)=0, ~\phi^{0}(x, s)=\phi_{0}(x, s), \end{array} \end{align} $ | (6) |
其中
$ \begin{align*} \left\{\begin{array}{ll} u_{0}(x)=u_{0}(x, 0), v_{0}(x)=v_{0}(x, 0), x\in[0, L], \\ u_{1}(x)=\partial_{t}u_{0}(x, t)\mid_{t=0}, v_{1}(x)= \partial_{t}v_{0}(x, t)\mid_{t=0}, ~x\in[0, L], \\ \eta_{0}(x, s)=u_{0}(x, 0)-u_{0}(x, -s), \phi_{0}(x, s)=v_{0}(x, 0)-v_{0} (x, -s), \\ (x, s)\in[0, L]\times{\mathbb{R}}^{+}. \end{array} \right. \end{align*} $ |
为方便起见, 记
$ \begin{align*} H=V_{0}\times V_{0}, V=V_{1}\times V_{2}, \end{align*} $ |
用
$ \begin{align*} (u, v)=\int_{[0, L]}(u_{1}v_{1}+u_{2}v_{2}){\text{d}}x, ~|u|^{2}_{2}=|u_{1}|^{2}_{2}+|u_{2}|^{2}_{2}. \end{align*} $ |
同理,
$ \begin{align*} ((u, v))=\int_{[0, L]}(\Delta u_{1}\Delta v_{1}+\nabla u_{2}\nabla v_{2}){\text{d}}x, ~||u||^{2}_{2}=|\Delta u_{1}|^{2}_{2}+|\nabla u_{2}|^{2}_{2}. \end{align*} $ |
下面, 我们考虑特征值问题
$ \begin{align} \left\{\!\!\begin{array}{l} -\nabla v=\lambda v, ~x\in[0, L], \\ v(0)=v(L)=0, \end{array} \right. \end{align} $ | (1.1) |
其中
$ \begin{align} \left\{\!\!\begin{array}{l} \Delta^{2} u=\lambda^{2} u, ~x\in[0, L], \\ u(0)=\Delta u(0)=u(L)=\Delta u(L)=0, \end{array} \right. \end{align} $ | (1.2) |
则
非线性函数
根据记忆核函数
$ \begin{align*} (u, v)_{\mu, V_{i}}=\int_{0}^{\infty }\mu(r)(u(r), v(r))_{V_{i}} {\text{d}}r, \|u\|_{\mu, V_{i}}^{2}=(u, u)_{\mu, V_{i}}=\int_{0}^{\infty } \mu(r)\|u(r)\|_{V_{i}}^{2}{\text{d}}r. \end{align*} $ |
定义如下Hilbert空间:
引理1.1[8] 设记忆项
(ⅰ) 若初值
$ \begin{align*} (u, v, u_{t}, v_{t}, \eta, \phi)\in C([0, T], \mathcal{H}), ~\forall T>0, \end{align*} $ |
满足
$ \begin{align*} u\in L^{\infty}(0, T;V_{1}), ~u_{t}\in L^{\infty}(0, T;V_{0}), ~\eta\in L^{\infty}(0, T;L^{2}_{\mu_{1}}({\mathbb{R}}^{+}\times{\mathbb{R}}^ {+}, V_{1})), \\[1mm] v\in L^{\infty}(0, T;V_{2}), ~v_{t}\in L^{\infty}(0, T;V_{0}), ~\phi \in L^{\infty}(0, T;L^{2}_{\mu_{2}}({\mathbb{R}}^{+}\times{\mathbb{R}}^{+}, V_{2})). \end{align*} $ |
(ⅱ) 令
$ \begin{align*} |z_{1}(t)-z_{2}(t)|_{\mathcal{H}}\leqslant {\text{e}}^{ct}|z_{1}(0)-z_{2}(0)|_{\mathcal{H}}, ~t\in[0, T]. \end{align*} $ |
问题
$ \begin{align*} S(t)(u_{0}, v_{0}, u_{1}, v_{1}, \eta_{0}, \phi_{0})=(u(t), v(t), u_{t}(t), v_{t}(t), \eta^{t}, \phi^{t}), ~t\geqslant0, \end{align*} $ |
其中
定义1.2[12] 设
$ \begin{align} \lim\limits_{k\rightarrow\infty}\lim\limits_{l\rightarrow\infty}\phi(x_{n_{k}}, x_{n_{l}})=0. \end{align} $ | (1.3) |
令
引理1.3[12] 设
$ \begin{align*} \|S(T)x-S(T)y\|\leqslant\epsilon+\phi_{T}(x, y), ~\forall(x, y)\in B_{0}, \end{align*} $ |
其中
注: 一个半群称之为耗散的是指它拥有一个紧的吸收集.
定理1.4[17] 一个耗散的动力系统
本文的主要结果是以下定理.
定理1.5 设记忆项
为了证明定理
首先, 由
$ f_{1}(s)s+\eta s^{2}+K_{1}\geqslant0, ~\forall s\in{\mathbb{R}}; $ | (2.1) |
$ F_{1}(s)+\eta s^{2}+K_{2}\geqslant0, ~\forall s\in{\mathbb{R}}; $ | (2.2) |
$ f_{2}(s)s+\phi s^{2}+K_{3}\geqslant0, ~\forall s\in{\mathbb{R}}; $ | (2.3) |
$ F_{2}(s)+\phi s^{2}+K_{4}\geqslant0, ~\forall s\in{\mathbb{R}}, $ | (2.4) |
其中
$ \begin{align} \begin{array}{l} ~~~\dfrac{1}{2}\cdot\dfrac{{\text{d}}}{{\text{d}}t}(L_{1}|\Delta u|^{2}_{2}+|\varphi|^{2}_{2}+|\psi|^{2}_{2}+ L_{2}|\nabla v|^{2}_{2})+\sigma L_{1}|\Delta u|^{2}_{2}\\ +(\alpha-\sigma)|\varphi|^{2}_{2}-\sigma(\alpha-\sigma) (u, \varphi) +\sigma L_{2}\|\nabla v\|^{2}_{2}+(\beta-\sigma)|\psi|^{2}_{2}-\sigma(\beta-\sigma)(v, \psi)\\ +(\eta^{t}, u_{t})_{\mu_{1}, V_{1}}+ \sigma(\eta^{t}, u)_{\mu_{1}, V_{1}}+(\phi^{t}, v_{t})_{\mu_{2}, V_{2}}+\sigma(\phi^{t}, v)_{\mu_{2}, V_{2}}+k((u-v)^{+}, \varphi-\psi)\\ +(f_{1}(u), \varphi)+(f_{2}(v), \psi)=(g_{1}, \varphi)+(g_{2}, \psi). \end{array} \end{align} $ | (2.5) |
结合
$ (\eta^{t}, u_{t})_{\mu_{1}, V_{1}}+(\phi^{t}, v_{t})_{\mu_{2}, V_{2}}\\ = (\eta^{t}, \eta^{t}_{t}+\eta^{t}_{s})_{\mu_{1}, V_{1}}+(\phi^{t}, \phi^{t}_{t}+\phi^{t}_{s})_{\mu_{2}, V_{2}}\\ = \dfrac{1}{2}\cdot\dfrac{{\text{d}}}{{\text{d}}t}| \eta^{t}|^{2}_{\mu_{1}, V_{1}}+\dfrac{1}{2}\dfrac{{\text{d}}} {{\text{d}}t}\|\phi^{t}\|^{2}_{\mu_{2}, V_{2}} +\int_{0}^{\infty }\mu_{1}(s)(\eta^{t}(s), \eta^{t}_{s}(s))_{V_{1}}{\text{d}}s+\\ \int_{0}^{\infty }\mu_{2}(s)(\phi^{t}(s), \phi^{t}_{s} (s))_{V_{2}}{\text{d}}s\\ =\dfrac{1}{2}\cdot\dfrac{{\text{d}}}{{\text{d}}t}| \eta^{t}|^{2}_{\mu_{1}, V_{1}}+\dfrac{1}{2}\int_{0}^{\infty } \mu_{1}(s){\text{d}}|\eta^{t}(s)|^{2}_{V_{1}}+ \dfrac{1}{2}\cdot\dfrac{{\text{d}}}{{\text{d}}t} \|\phi^{t}\|^{2}_{\mu_{2}, V_{2}}+ \dfrac{1}{2}\int_{0}^{\infty }\mu_{1}(s){\text{d}} \|\phi^{t}(s)\|^{2}_{V_{2}}\\ = \dfrac{1}{2}\cdot\dfrac{{\text{d}}}{{\text{d}}t}|\eta^{t}|^ {2}_{\mu_{1}, V_{1}}- \dfrac{1}{2}\int_{0}^{\infty }\mu_{1}'(s)|\eta^{t}(s) |^{2}_{V_{1}}{\text{d}}s +\dfrac{1}{2}\cdot\dfrac{{\text{d}}}{{\text{d}}t} \|\phi^{t}\|^{2}_{\mu_{2}, V_{2}}-\dfrac{1}{2}\int_{0}^{\infty }\mu_{2}'(s)|\phi^{t}(s)|^{2}_{V_{2}}{\text{d}}s \\ \geqslant \dfrac{1}{2}\cdot\dfrac{{\text{d}}}{{\text{d}}t}| \eta^{t}|^{2}_{\mu_{1}, V_{1}}+\dfrac{\delta}{2}\int_{0}^{\infty }\mu_{1}(s)|\eta^{t}(s)|^{2}_{V_{1}}{\text{d}}s+ \dfrac{1}{2}\cdot\dfrac{{\text{d}}}{{\text{d}}t} \|\phi^{t}\|^{2}_{\mu_{2}, V_{2}}+\dfrac{\delta}{2} \int_{0}^{\infty } \mu_{2}(s)\|\phi^{t}(s)\|^{2}_{V_{2}} {\text{d}}s \\ =\dfrac{1}{2}\cdot\dfrac{{\text{d}}}{{\text{d}}t}|\eta^{t}| ^{2}_{\mu_{1}, V_{1}}+\dfrac{\delta}{2}|\eta^{t}|^{2}_{\mu_{1}, V_{1}}+ \dfrac{1}{2}\cdot\dfrac{{\text{d}}}{{\text{d}}t} \|\phi^{t}\|^{2}_{\mu_{2}, V_{2}}+\dfrac{\delta}{2} \|\phi^{t}\|^{2}_{\mu_{2}, V_{2}}, $ |
及
$ \begin{align*} \sigma(\eta^{t}, u)_{\mu_{1}, V_{1}}\geqslant- \dfrac{\delta}{4}|\eta^{t}|^{2}_{\mu_{1}, V_{1}}- \dfrac{\mu_{0}\sigma^{2}}{\delta}|\Delta u|^{2}_{2}, \\ \sigma(\phi^{t}, v)_{\mu_{2}, V_{2}}\geqslant- \dfrac{\delta}{4}\|\phi^{t}\|^{2}_{\mu_{2}, V_{2}}- \dfrac{\mu_{0}\sigma^{2}}{\delta}\|\Delta v\|^{2}_{2}. \end{align*} $ |
从而由式
$ \begin{align} \begin{array}{l} \dfrac{1}{2}\cdot\dfrac{{\text{d}}}{{\text{d}}t}(|L_{1}\Delta u|^{2}_{2}+|\varphi|^{2}_{2}+|\psi|^{2}_{2}+\|L_{2}\nabla v\|^{2}_{2} +|\eta^{t}|^{2}_{\mu_{1}, V_{1}}+\|\phi^{t}\|^{2}_{\mu_{2}, V_{2}})\\ ~~~~~~+\sigma\Big(L_{1}-\dfrac{\mu_{0}\sigma}{\delta}\Big)|\Delta u|^{2}_{2} +(\varepsilon-\sigma)\|\phi\|^{2}_{2}-\sigma (\varepsilon-\sigma)(u, \phi)+\dfrac{\delta}{4} |\eta^{t}|^{2}_{\mu_{1}, V_{1}}\\ ~~~~~~+\sigma\Big(L_{2}-\dfrac{\mu_{0}\sigma}{\delta}\Big)\|\nabla v\|^{2}_{2} +(\beta-\sigma)|\psi|^{2}_{2}-\sigma(\beta-\sigma)(u, \psi)+ \dfrac{\delta}{4}|\psi^{t}|^{2}_{\mu_{2}, V_{2}}\\ ~~~~~~+k((u-v)^{+}, \varphi-\psi) +(f_{1}(u), \varphi)+(f_{2}(v), \psi)\leq(g_{1}, \varphi)+(g_{2}, \psi). \end{array} \end{align} $ | (2.6) |
取充分小的
$ \begin{align} L_{1}-\dfrac{\mu_{0}\sigma}{\delta}-\dfrac{\varepsilon \sigma}{2\lambda}\geqslant1-\sigma, ~\dfrac{\alpha}{2}-\sigma\geqslant\dfrac{\alpha}{4}, ~L_{2}-\dfrac{\mu_{0}\sigma}{\delta}- \dfrac{\beta\sigma}{2\lambda}\geqslant1-\sigma, ~\dfrac{\beta}{2}-\sigma\geqslant\dfrac{\beta}{4} . \end{align} $ | (2.7) |
结合Hölder、Young和Poincare不等式, 有
$ \begin{align} \begin{array}{l} \sigma\Big(L_{1}-\dfrac{\mu_{0}\sigma}{\delta}\Big)| \Delta u|^{2}_{2}+(\alpha-\sigma)|\varphi|^{2}_{2}- \sigma(\alpha-\sigma)(u, \varphi)\\ ~~~+\sigma\Big(L_{2}-\dfrac{\mu_{0}\sigma}{\delta}\Big) \|\nabla v\|^{2}_{2}+(\beta-\sigma)|\psi|^{2}_{2}- \sigma(\beta-\sigma)(v, \psi)\\ \geqslant \sigma\Big(L_{1}-\dfrac{\mu_{0}\sigma}{\delta}\Big) |\Delta u|^{2}_{2}+(\alpha-\sigma)|\varphi|^{2}_{2}- \dfrac{\alpha\sigma}{\sqrt{\lambda}}|\Delta u|_{2}|\varphi|_{2}\\ ~~~+\sigma\Big(L_{2}-\dfrac{\mu_{0}\sigma}{\delta}\Big)\|\nabla v\|^{2}_{2}+(\beta-\sigma)|\psi|^{2}_{2}-\dfrac{\beta\sigma} {\sqrt{\lambda}}\|\nabla v\|_{2}|\psi|_{2} \\ \geqslant \sigma\Big(L_{1}-\dfrac{\mu_{0}\sigma}{\delta}\Big) |\Delta u|^{2}_{2}+(\alpha-\sigma)|\varphi|^{2}_{2}-\Big(\dfrac {\alpha\sigma^{2}}{2\lambda}|\Delta u|^{2}_{2}+ \dfrac{\alpha}{2}|\varphi|^{2}_{2}\Big)\\ ~~~+\sigma\Big(L_{2}-\dfrac{\mu_{0}\sigma}{\delta}\Big) \|\nabla v\|^{2}_{2}+(\beta-\sigma)|\psi|^{2}_{2}-\Big( \dfrac{\beta\sigma^{2}}{2\lambda}\|\nabla v\|^{2}_{2}+ \dfrac{\beta}{2}|\psi|^{2}_{2}\Big)\\ =\sigma\Big(L_{1}-\dfrac{\mu_{0}\sigma}{\delta}- \dfrac{\alpha\sigma}{2\lambda}\Big)|\Delta u|^{2}_{2}+\Big(\dfrac{\alpha}{2}-\sigma\Big)| \varphi|^{2}_{2}+\sigma\Big(L_{2}-\dfrac{\mu_{0}\sigma}{\delta}- \dfrac{\beta\sigma}{2\lambda}\Big)\\ \|\nabla v\|^{2}_{2}+\Big(\dfrac{\beta}{2}-\sigma\Big)\psi|^{2}_{2}\\ \geqslant \sigma(1-\sigma)|\Delta u|^{2}_{2}+\dfrac{\alpha}{4}|\varphi|^{2}_{2}+\sigma(1-\sigma) \|\nabla v\|^{2}_{2}+\dfrac{\beta}{4}|\psi|^{2}_{2}. \end{array} \end{align} $ | (2.8) |
此外,
$ \begin{align} \begin{array}{l} \displaystyle(f_{1}(u), \varphi)=(f_{1}(u), u_{t}+\sigma u)=\dfrac{{\text{d}}} {{\text{d}}t}\int_{[0, L]}F_{1}(u){\text{d}}x+ \sigma\int_{[0, L]}f_{1}(u)u{\text{d}}x, \\ \displaystyle(f_{2}(v), \psi)=(f_{2}(v), v_{t}+\sigma v)=\frac{{\text{d}}}{{\text{d}}t}\int_{[0, L]} F_{2}(v){\text{d}}x+\sigma\int_{[0, L]}f_{2}(v)v {\text{d}}x. \end{array} \end{align} $ | (2.9) |
且
$ \begin{align} (g_{1}, \varphi)=\dfrac{{\text{d}}}{{\text{d}}t}\int_{[0, L]} gu{\text{d}}x+\sigma\int_{[0, L]}g_{1}u{\text{d}}x, ~(g_{2}, \psi)=\dfrac{{\text{d}}}{{\text{d}}t}\int_{[0, L]}g_{2}v{\text{d}}x+\sigma\int_{[0, L]}g_{2}{\text{d}}x, \end{align} $ | (2.10) |
$ \begin{align} k((u-v)^{+}, \varphi-\psi)=&k((u-v)^{+}, (u-v)_{t})+\sigma k((u-v)^{+}, (u-v))\notag\\ =&\dfrac{1}{2}\cdot\dfrac{{\text{d}}}{dt}(k|(u-v)^{+}|^{2})+\sigma k|(u-v)^{+}|^{2}. \end{align} $ | (2.11) |
将式
$ \dfrac{1}{2}\cdot\dfrac{{\text{d}}}{{\text{d}}t}(L_{1}|\Delta u|^{2}_{2}+|\varphi|^{2}_{2}+|\eta^{t}|^{2}_{\mu_{1}, V_{1}} +k|(u-v)^{+}|^{2}_{2}+L_{2}\|\nabla v\|^{2}_{2}+|\psi|^{2}_{2}+ \|\phi^{t}\|^{2}_{\mu_{2}, V_{2}}\notag\\ \ \ \ \ \ \ \ \ \ \ +\!2\int_{[0, L]}F_{1}(u){\text{d}}x\!-\!2 \int_{[0, L]}g _{1}u{\text{d}}x\!+\!2\int_{[0, L]}F_{2}(v){\text{d}}x \!-\!2\int_{[0, L]}g_{2}v{\text{d}}x)\!+\!\sigma(1\!-\!\sigma)\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \|\Delta u\|^{2}_{2} \!+\!\dfrac{\alpha}{4}|\varphi|^{2}_{2}\notag\\ \ \ \ \ \ \ \ \ \ \ +\dfrac{\delta}{4}|\eta^{t}|^{2}_{\mu_{1}, V_{1}}+ \sigma(1-\sigma)\|\nabla v\|^{2}_{2}\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ +\dfrac{\beta}{4}|\psi|^{2}_{2}+\dfrac{\delta}{4}\|\phi^{t}\| ^{2}_{\mu_{2}, V_{2}}+\sigma k|(u-v)^{+}|^{2}_{2}+\sigma\int_{[0, L]}f_{1}(u)u{\text{d}}x\notag\\ \ \ \ \ \ \ \ \ \ \ -\sigma\int_{[0, L]}g_{1}u{\text{d}}x+\sigma\int_{[0, L]} f_{2}(v)v{\text{d}}x-\sigma\int_{[0, L]}g_{2} v{\text{d}}x\leqslant0. $ | (2.12) |
取
$ \begin{align} \begin{array}{l} E(t)=L_{1}|\Delta u|^{2}_{2}+|\varphi|^{2}_{2}+|\eta^{t}|^{2}_{\mu_{1}, V_{1}} +k|(u-v)^{+}|^{2}_{2}+L_{2}\|\nabla v\|^{2}_{2}+|\psi|^{2} _{2}+\|\phi^{t}\|^{2}_{\mu_{2}, V_{2}}\\[2mm] \qquad\quad ~ \displaystyle+2\int_{[0, L]}F_{1}(u){\text{d}}x-2\int_{[0, L]} g_{1}u{\text{d}}x+2\int_{[0, L]}F_{2}(v){\text{d}}x -2\int_{[0, L]}g_{2}v{\text{d}}x, \end{array} \end{align} $ | (2.13) |
和
$ \begin{align} \begin{array}{l} I(t)=|\Delta u|^{2}_{2}+|\varphi|^{2}_{2} +|\eta^{t}|^{2}_{\mu_{1}, V_{1}}+\|\nabla v\|^{2}_{2}+ |\psi|^{2}_{2}+ \|\phi^{t}\|^{2}_{\mu_{2}, V_{2}}+ k|(u-v)^{+}|^{2}_{2}\\[2mm] \qquad \quad \displaystyle+\int_{[0, L]}f_{1}(u)u{\text{d}}x-\int_{[0, L]} g_{1}u{\text{d}}x +\int_{[0, L]}f_{2}(v)v{\text{d}}x-\int_{[0, L]} g_{2}v{\text{d}}x, \end{array} \end{align} $ | (2.14) |
从而有
$ \begin{align*} \dfrac{\text{d}}{{\text{d}}t}E(t)+\sigma_{0}I(t)\leqslant0, \end{align*} $ |
即
$ \begin{align} \displaystyle E(t)\leqslant-\sigma_{0}\int_{0}^{t}I(\tau) {\text{d}}\tau+E(0), \end{align} $ | (2.15) |
其中
$ \begin{align} \begin{array}{l} E(0)=Ɫ_{1}|\Delta u_{0}|^{2}_{2}+|u_{1}+\sigma u_{0}|^{2} _{2}+|\eta_{0}|^{2}_{\mu_{1}, V_{1}}\\[2mm] \qquad \quad ~\, \displaystyle+k|(u-v)^{+}_{0}|^{2}_{2}+2\int_{[0, L]} F_{1}(u_{0}){\text{d}}x-2\int_{[0, L]}g_{1}u_{0} {\text{d}}x+L_{2}|\nabla v_{0}\|^{2}_{2}\\[2mm] \qquad \quad ~\, \displaystyle+\|v_{1}+\sigma v_{0}\|^{2}_{2}+\|\phi_{0}\|^{2}_{\mu_{2}, V_{2}}+2 \int_{[0, L]} F_{2}(v_{0}){\text{d}}x-2\int_{[0, L]}g_{2}v_{0} {\text{d}}x. \end{array} \end{align} $ | (2.16) |
根据
$ \begin{align} E(t)\geqslant &L_{1}|\Delta u|^{2}_{2}+|\varphi|^{2}_{2}+|\eta^{t}|^{2}_{\mu_{1}, V_{1}}+k|(u-v)^{+}| ^{2}_{2}\\ &-2\int_{[0, L]}(\eta u^{2}+K_{3}){\text{d}}x-\sigma_{0}|u|^{2}_{2}-\dfrac{1}{\sigma_{0}}\|g_{1}\|^{2}_{2}\notag\\ &+L_{2}\|\nabla v\|^{2}_{2} +|\psi|^{2}_{2}+\|\phi^{t}\|^{2}_{\mu_{2}, V_{2}}-2\int_{[0, L]}(\phi v^{2}+K_{4}){\text{d}}x\\ &-\sigma_{0}\|v\|^{2}_{2}-\dfrac{1} {\sigma_{0}}\|g_{2}\|^{2}_{2}\notag\\ \geqslant&\Big(1-\dfrac{k+2\eta+\sigma_{0}}{\lambda}\Big) |\Delta u|^{2}_{2}+|\varphi|^{2}_{2}+|\eta^{t}|^{2}_{\mu_{1}, V_{1}}-M_{1}\notag\\ &+\Big(1-\dfrac{k+2\eta+\sigma_{0}}{\lambda}\Big)\|\nabla v\|^{2}_{2}+|\psi|^{2}_{2}+\|\phi^{t}\|^{2}_{\mu_{2}, V_{2}} -M_{2}, \end{align} $ | (2.17) |
其中
$ \begin{align} I(t)\geqslant&|\Delta u|^{2}_{2}+|\varphi|^{2}_{2}+|\eta^{t}| ^{2}_{\mu_{1}, V_{1}}+k|(u-v)^{+}|^{2}_{2}+2\int_{[0, L]} f_{1}(u)u{\text{d}}x-2\int_{[0, L]}g_{1}u{\text{d}}x\notag\\ &+\|\nabla v\|^{2}_{2}+|\psi|^{2}_{2}+\|\phi^{t}\|^{2}_{\mu_{2}, V_{2}}+2 \int_{[0, L]}f_{2}(v)v{\text{d}}x-2\int_{[0, L]} g_{2}v{\text{d}}x \notag\\\geqslant & \Big(1-\dfrac{k+2\eta+\sigma_{0}}{\lambda}\Big)| \Delta u|^{2}_{2}+|\varphi|^{2}_{2}+|\eta^{t}|^{2}_ {\mu_{1}, V_{1}}-M_{3}\notag\\ &+\Big(1-\dfrac{k+2\eta+\sigma_{0}}{\lambda}\Big)\|\nabla v\|^{2}_{2}+|\psi|^{2}_{2}+\|\phi^{t}\|^{2}_{\mu_{2}, V_{2}}-M_{4}. \end{align} $ | (2.18) |
其中
$ \begin{align} 1-\dfrac{k+2\eta+\sigma_{0}}{\lambda}>0, 1-\dfrac{k+2\phi+\sigma_{0}}{\lambda}>0. \end{align} $ | (2.19) |
结合式
$ E(t)\geqslant C_{1}(|\Delta u|^{2}_{2}+|\varphi|^{2}_{2}+|\eta^{t}|^{2}_{\mu_{1}, V_{1}}+\|\nabla v\|^{2}_{2}+|\psi|^{2}_{2}+\|\phi^{t}\|^{2}_{\mu_{2}, V_{2}})-M_{1} -M_{2}, $ | (2.20) |
$ I(t)\geqslant C_{1}(|\Delta u|^{2}_{2}+|\varphi|^{2}_{2}+|\eta^{t}|^{2}_{\mu_{1}, V_{1}}+\|\nabla v\|^{2}_{2}+|\psi|^{2}_{2}+\|\phi^{t}\|^{2}_{\mu_{2}, V_{2}})-M_{3}-M_{4}, $ | (2.21) |
故由式
$ \begin{align} \begin{array}{l} C_{1}(|\Delta u|^{2}_{2}+|\varphi|^{2}_{2}+|\eta^{t}|^{2}_{\mu_{1}, V_{1}}+\|\nabla v\|^{2}_{2}+|\psi|^{2}_{2}+\|\phi^{t}\|^{2}_{\mu_{2}, V_{2}})-M_{1}-M_{2}\\ \leqslant \!-\!\sigma_{0}\int_{0}^{t}[C_{1}(|\Delta u|^{2}_{2}\!+\!|\varphi|^{2}_{2}\!+\!|\eta^{t}|^{2}_{\mu_{1}, V_{1}}\!+\!\|\nabla v\|^{2}_{2}\!+\!|\psi|^{2}_{2}\!+\!\|\phi^{t}\|^{2}_{\mu_{2}, V_{2}})\!-\!M_{3}\!-\!M_{4}]{\text{d}}t\!+\!E(0). \end{array} \end{align} $ | (2.22) |
因此, 对
$ \begin{align} |\Delta u(t_{0})|^{2}_{2}+|\varphi(t_{0})|^{2}_{2}+|\eta^{t_{0}}|^{2}_{\mu_{1}, V_{1}}+\|\nabla v(t_{0})\|^{2}_{2}+|\psi(t_{0})|^{2}_{2}+\|\phi^{t_{0}}\|^{2}_{\mu_{2}, V_{2}}\leqslant K. \end{align} $ | (2.23) |
所以, 如果
$ B\!=\!\{(u_{0}, v_{0}, u_{1}, v_{1}, \eta_{0}, \phi_{0})^{\text{T}}\in\mathcal{H}_{0}:|\Delta u_{0}|^{2}_{2}\!+\!|\varphi_{0}|^{2}_{2}\!+\!|\eta_{0}|^{2}_ {\mu_{1}, V_{1}}\!+\\ \!||\nabla v_{0}\|^{2}_{2}\!+\!|\psi_{0}|^{2} _{2}+ \|\phi_{0}\|^{2}_{\mu_{2}, V_{2}}\leqslant K\}, $ |
则
定理2.1 假设记忆项
有界吸收集的存在性意味着对于依赖于有界集
$ \begin{align} \|(u(t), v(t), u_{t}(t), v_{t}(t), \eta^{t}, \phi^{t})\|_{\mathcal{H}}\leqslant C_{B}, ~\forall t\geqslant0, \end{align} $ | (2.24) |
其中
引理2.2 在定理
$ \begin{align} \begin{array}{l} |(z_{1}(t)-z_{2}(t)|^{2}_{\mathcal{H}}\leqslant {\text{e}}^{-\alpha_{2}t}|(z_{1}(0)-z_{2}(0))|^{2}_{\mathcal{H}}\\ \displaystyle+C_{3}\int_{0}^{t}{\text{e}}^{-\alpha_{2}(t-s)} |(u(s)-x(s))+(v(s)-y(s))|^{2}_{2(p+1)}{\text{d}}s, ~\forall t\geqslant0, \end{array} \end{align} $ | (2.25) |
其中,
证明 给定一个有界集
$ \begin{align} \left\{\!\!\begin{array}{l} w_{tt}+\alpha w_{t}+L_{1}\Delta^{2}w+\int_{0}^{\infty }\mu_{1}(s)\Delta^{2}\zeta^{t}(s){\text{d}}s+\\ k(u-v)^{+}-k(x-y)^{+}+f_{1}(u)-f_{1}(x)=0, \\ \omega_{tt}+\beta \omega_{t}-L_{2}\nabla^{2}\omega+\int_{0}^{\infty }\mu_{2}(s)\Delta^{2}\vartheta^{t}(s){\text{d}} s\\ -k(u-v)^{+}+k(x-y)^{+}+f_{2}(v)-f_{2}(y)=0, \\ \zeta_{t}=-\zeta_{s}+w_{t}, \vartheta_{t}=- \vartheta_{s}+\omega_{t}. \end{array} \right. \end{align} $ | (2.26) |
相应的初值条件为
$ w(0)=u_{0}-x_{0}, ~w_{t}(0)=u_{1}-x_{1}, ~\zeta^{0}=\eta_{0}-\xi_{0}, \omega(0)=v_{0}-y_{0}, ~\omega_{t}(0)=v_{1}-y_{1}, \\ ~\vartheta^{0}=\phi_{0}-\gamma_{0}. $ |
用
$ \begin{align} \dfrac{1}{2}\cdot\dfrac{{\text{d}}}{{\text{d}}t}& (L_{1}|\Delta w|^{2}_{2}+L_{2}\|\nabla \omega\|^{2}_{2}+ |\varsigma_{1}|^{2}_{2}+\|\varsigma_{2}\|^{2}_{2})+\\ &\sigma L_{1}|\Delta w|^{2}_{2}+\sigma L_{2}\|\nabla\omega\|^{2}_{2}+ (\alpha-\sigma)(w_{t}, \varsigma_{1})\notag\\ &+(\beta-\sigma)(\omega_{t}, \varsigma_{2}) +(\zeta^{t}, w_{t})_{\mu_{1}, V_{1}}\\ &+\sigma(\zeta^{t}, w)_{\mu_{1}, V_{1}}+(\vartheta^{t}, \omega_{t})_{\mu_{2}, V_{2}} +\sigma(\vartheta^{t}, \omega)_{\mu_{2}, V_{2}}\notag\\ &+(k(u-v)^{+}-k(x-y)^{+}, \varsigma_{1})-(k(u-v)^{+}-k(x-y)^{+}, \varsigma_{2})\notag\\ &+(f_{1}(u)-f_{1}(x), \varsigma_{1})+(f_{2}(v)-f_{2}(y), \varsigma_{2})=0. \end{align} $ | (2.27) |
类似前面的讨论, 我们有
$ \begin{align*} (\alpha-\sigma)(w_{t}, \varsigma_{1})\!=\!(\alpha\!-\!\sigma) |\varsigma_{1}|^{2}_{2}\!-\!\sigma(\alpha\!-\!\sigma)(w, \varsigma_{1}), (\beta\!-\!\sigma)(\omega_{t}, \varsigma_{2})\!=\!(\beta\!-\!\sigma) \|\varsigma_{2}\|^{2}_{2}\!-\!\sigma(\beta\!-\!\sigma)(\omega, \varsigma_{2}) \end{align*} $ |
和
$ \begin{align*} (\zeta^{t}, w_{t})_{\mu_{1}, V_{1}}\geqslant\dfrac{1}{2}\cdot \dfrac{{\text{d}}}{{\text{d}}t}|\zeta^{t}|^{2}_{\mu_{1}, V_{1}} +\dfrac{\delta}{2}|\zeta^{t}|^{2}_{\mu_{1}, V_{1}}, (\vartheta^{t}, \omega_{t})_{\mu_{2}, V_{2}}\geqslant\dfrac{1}{2}\cdot \dfrac{{\text{d}}}{{\text{d}}t}\|\vartheta^{t}\|^{2}_{\mu_{2}, V_{2}}+\dfrac{\delta}{2}\|\vartheta^{t}\|^{2}_{\mu_{2}, V_{2}} \end{align*} $ |
及
$ \begin{align*} \sigma(\zeta^{t}, w)_{\mu_{1}, V_{1}}\geqslant-\dfrac {\delta}{4}|\zeta^{t}|^{2}_{\mu_{1}, V_{1}}-\dfrac{\mu_{0} \sigma^{2}}{\delta}|\Delta w|^{2}_{2}, \sigma(\vartheta^{t}, \omega)_{\mu_{2}, V_{2}} \geqslant-\dfrac{\delta}{4}\|\vartheta^{t}\|^{2}_{\mu_{2}, V_{2}}-\dfrac{\mu_{0}\sigma^{2}}{\delta}\|\nabla \omega\|^{2}_{2}. \end{align*} $ |
进一步, 类似式(2.8)的估计, 可得
$ \begin{align} &\sigma\Big(1-\dfrac{\mu_{0}\sigma}{\delta}\Big)|\Delta w|^{2}_ {2}+(\alpha-\sigma)|\varsigma_{1}|^{2}_{2}-\sigma(\alpha- \sigma)(w, \varsigma_{1})+\sigma\Big(1-\dfrac{\mu_{0}\sigma} {\delta}\Big)\|\nabla \omega\|^{2}_{2}\notag\\ &+\!(\beta\!-\!\sigma)\|\varsigma_{2}\|^{2}_{2}\!-\!\sigma(\beta\!-\! \sigma)(\omega, \varsigma_{2}) \geqslant\sigma(1\!-\!\sigma)|\triangle w|^{2}_{2}\!+\!\dfrac{\alpha}{4}|\varsigma_{1}|^{2}_{2}\!+\! \sigma(1\!-\!\sigma)\|\nabla \omega\|^{2}_{2}\!+\!\dfrac{\beta}{4}\|\varsigma_{2}\|^{2}_{2}. \end{align} $ | (2.28) |
从而由式
$ \begin{align} \dfrac{1}{2}\cdot\dfrac{{\text{d}}}{{\text{d}}t}& (|\Delta w|^{2}_{2}+|\varsigma_{1}|^{2}_{2}+|\zeta^{t}|^ {2}_{\mu_{1}, V_{1}}+\|\nabla \omega\|^{2}_{2}+\|\varsigma_{2} \|^{2}_{2}+\|\vartheta^{t}\|^{2}_{\mu_{2}, V_{2}})\notag\\ &\quad \, +\sigma(1-\sigma)|\Delta w|^{2}_{2}+\dfrac{\alpha}{4}| \varsigma_{1}|^{2}_{2}+\dfrac{\delta}{4}|\zeta^{t}|^{2}_ {\mu_{1}, V_{1}}+\sigma(1-\sigma)\\ &\|\nabla \omega\|^{2}_{2}+ \dfrac{\beta}{4}\|\varsigma_{2}\|^{2}_{2}+\dfrac{\delta}{4} \|\vartheta^{t}\|^{2}_{\mu_{2}, V_{2}}\notag\\ &=-(k(u-v)^{+}-k(x-y)^{+}, \varsigma_{1})+(k(u-v)^{+}-k(x-y)^{+}, \varsigma_{2})\notag\\& \quad \, -(f_{1}(u)-f_{1}(x), \varsigma_{1})-(f_{2}(v)-f_{2}(y), \varsigma _{2}).\end{align} $ | (2.29) |
根据Young不等式和Poincare不等式, 有
$ \begin{align} |\!-\!(k(u-v)^{\!+\!}\!-\!k(x-y)^{\!+\!}, \varsigma_{1})|\!=\! &\Big|-\int_ {\Omega} (k(u-v)^{+}-k(x-y)^{+})(w_{t}+\sigma w){\text{d}}x\Big|\notag\\ \leqslant\!&\int_{\Omega} (k(u\!-\!v)^{+}\!-\!k(x\!-\!y)^{+})w_{t}{\text{d}}x\!+\!\\ & \int_{\Omega} (k(u\!-\!v)^{+}\!-\!k(x\!-\!y)^{+})\\ &\sigma w{\text{d}}x\notag\\ \leqslant & \dfrac{k^{2}}{\delta_{0}}|((u-v)^{+}-(x-y)^{+})|^{2}_{2}+ \dfrac{\delta_{0}}{4}|w_{t}|^{2}_{2}+\sigma k|w|^{2}_{2}\notag\\ \leqslant&\dfrac{k^{2}c_{0}}{\delta_{0}}|w|^{2}_{2(p+1)}+ \dfrac{\delta_{0}}{4}|\varsigma_{1}|_{2}^{2}+\Big(\dfrac{ \delta_{0}}{4\lambda}+\dfrac{\sigma k}{\lambda}\Big)|\Delta w|^{2}_{2}. \end{align} $ | (2.30) |
同理可得
$ \begin{align} |(k(u-v)^{+}-k(x-y)^{+}), \varsigma_{2})|\leqslant\dfrac {k^{2}c_{0}}{\delta_{0}}\|\omega\|^{2}_{2(p+1)}+ \dfrac{\delta_{0}}{4}\|\varsigma_{2}\|_{2}^{2}+\Big(\dfrac {\delta_{0}}{4\lambda}+\dfrac{\sigma k}{\lambda}\Big)\|\nabla \omega\|^{2}_{2}. \end{align} $ | (2.31) |
事实上,
利用Hölder不等式
$ \begin{align} |-(f_{1}(u)-f_{1}(x), \varsigma_{1})|=&\Big|-\int_{\Omega} (f_{1}(u)-f_{1}(x))(w_{t}+\sigma w){\text{d}}x\Big|\notag\\ \leqslant & k_{0}\int_{\Omega}(1+|u|^{p}+|x|^{p})|w||w_{t}+\sigma w|{\text{d}}x\notag\\ \leqslant&k_{0}\Big(|\Omega|^{\frac{p}{2(p+1)}}+|u|^{p}_{2(p+1)}+ |x|^{p}_{2(p+1)}\Big)|w|_{2(p+1)}(|w_{t}|_{2}+|\sigma w|_{2})\notag\\ \leqslant&C_{B}|w|_{2(p+1)}|w_{t}|_{2}+C_{B}|w|_{2(p+1)}| \sigma w|_{2}\notag\\ \leqslant &\dfrac{2C_{B}^{2}}{\delta_{0}}|w|_{2(p+1)}^{2}+ \dfrac{\delta_{0}}{4}|w_{t}|^{2}_{2}+ \dfrac{\delta_{0}\sigma^{2}}{4}|w|^{2}_{2}\notag\\ \leqslant &\dfrac{2C_{B}^{2}}{\delta_{0}}|w|_{2(p+1)}^{2}+ \dfrac{\delta_{0}}{4}|\varsigma_{1}|_{2}^{2}+ \dfrac{\delta_{0}\sigma^{2}}{2\lambda} |\triangle w|^{2}_{2}. \end{align} $ | (2.32) |
同理可得
$ \begin{align} |-(f_{2}(v)-f_{2}(y), \varsigma_{2})|\leqslant\dfrac{2C_{B} ^{2}}{\delta_{0}}\|\omega\|_{2(p+1)}^{2}+ \dfrac{\delta_{0}}{4}\|\varsigma_{2}||_{2}^{2}+ \dfrac{\delta_{0}\sigma^{2}}{2\lambda} \|\nabla \omega\|^{2}_{2}. \end{align} $ | (2.33) |
将式
$ \begin{align} \dfrac{{\text{d}}}{{\text{d}}t}&(|\Delta w|^{2}_{2}+ |\varsigma_{1}|^{2}_{2}+|\zeta^{t}|^{2}_{\mu_{1}, V_{1}}+\|\nabla \omega\|^{2}_{2}+\|\varsigma_{2}\| ^{2}_{2}+\|\vartheta^{t}\|^{2}_{\mu_{2}, V_{2}})\notag\\ &+\Big(2\sigma(1-\sigma)-\dfrac{\delta_{0}}{\sqrt{\lambda}} -\dfrac{2\sigma}{\lambda}\Big(k+\dfrac{\delta_{0}\sigma}{4}\Big) \Big)(|\Delta w|^{2}_{2}+\|\nabla\omega\|_{2}^{2})\notag\\ &\!+\!\dfrac{\alpha}{2}|\varsigma_{1}|^{2}_{2}\!+\! \dfrac{\delta}{2}|\zeta^{t}|^{2}_{\mu_{1}, V_{1}} \!+\!\dfrac{\beta}{2}\|\varsigma_{2}\|^{2}_{2}\!+\! \dfrac{\delta}{2}\|\vartheta^{t}\|^{2}_{\mu_{2}, V_{2}} \leqslant \Big(\dfrac{2k^{2}c_{0}}{\delta_{0}}\!+\!\dfrac{4C_{B}^{2}} {\delta_{0}}\Big)\\ &(|w|^{2}_{2(p\!+\!1)}\!+\!\|\omega\|^{2}_{2(p\!+\!1)}). \end{align} $ | (2.34) |
取足够小的
$ \begin{align*} 2\sigma(1-\sigma)-\dfrac{\delta_{0}}{\sqrt{\lambda}} -\dfrac{2\sigma}{\lambda}\Big(k+\dfrac{\delta_{0}\sigma}{4}\Big) >0. \end{align*} $ |
令
定义如下泛函:
$ \begin{align*} E(t)=|\Delta w|^{2}_{2}+|\varsigma_{1}|^{2}_{2}+|\zeta^{t}|^{2}_{\mu, V}+\|\nabla \omega\|^{2}_{2}+\|\varsigma_{2}\|^{2}_{2}+\|\vartheta^{t}\|^{2}_{\mu_{2}, V}, \end{align*} $ |
则
$ \begin{align*} \dfrac{{\text{d}}}{{\text{d}}t}E(t)+\alpha_{2}E(t)\leqslant C_{3}(|w|^{2}_{2(p+1)}+\|\omega\|^{2}_{2(p+1)}). \end{align*} $ |
根据Gronwall引理, 可知
$ \begin{align*} E(t)\leqslant {\text{e}}^{-\alpha_{2}t}E(0)+C_{3}\int_{0}^{t}{\text{e}}^{-\alpha_{2}(t-s)} (|w|^{2}_{2(p+1)}+\|\omega\|^{2}_{2(p+1)}){\text{d}}s. \end{align*} $ |
由于
引理2.3 在定理
证明 令
$ \begin{align} |(S(t)z_{1}-S(t)z_{2}|_{\mathcal{H}} \leqslant\epsilon+C_{B}\Big(\int_{0}^{T}|(u(s)-x(s)) +(v(s)-y(s))|^{2}_{2(p+1)}{\text{d}}s\Big)^{\frac{1}{2}}. \end{align} $ | (2.35) |
由于
$ \begin{align*} |(u(t)-x(t))+&(v(t)-y(t))|_{2(p+1)}\\[1mm] &\leqslant C|\Delta(u(t)-x(t))+\nabla(v(t)-y(t))|_{2}^ {\theta}\cdot|(u(t)-x(t))+(v(t)-y(t))|^{1-\theta}_{2}\\[1mm]& \leqslant C_{B}|(u(t)-x(t))+(v(t)-y(t))|^{1-\theta}_{2}. \end{align*} $ |
由于
$ \begin{align} |(u(t)-x(t))+(v(t)-y(t))|_{2(p+1)}^{2}\leqslant C_{B}|(u(t)-x(t))+(v(t)-y(t))|^{2(1-\theta)}_{2}. \end{align} $ | (2.36) |
根据式
$ \begin{align*} |(S(t)z_{1}-S(t)z_{2})|_{\mathcal{H}} \leqslant\epsilon+\rho_{T}(z_{1}, z_{2}), \end{align*} $ |
其中
$ \begin{align*} \rho_{T}(z_{1}, z_{2})=C_{B}\Big(\int_{0}^{T}|(u(s)- x(s))+(v(s)-y(s))|^{2(1-\theta)}_{2}{\text{d}}s\Big) ^{\frac{1}{2}}. \end{align*} $ |
下证
给定一个序列
由紧嵌入
$ \begin{align*} \lim\limits_{k\rightarrow\infty}\lim\limits_ {l\rightarrow\infty}\int_{0}^{T}|u^{n_{k}}(s) -u^{n_{l}}(s)|^{2(1-\theta)}_{2}{\text{d}}s=0. \end{align*} $ |
即
定理1.5的证明 由定理
[1] | LAZER A C, MCKENNA P J. Large-amplitude periodic oscillations in suspension bridge:Some new connections with nonlinear analysis[J]. Society for Industrial and Applied Mathematics Review, 1990, 32: 537-578. |
[2] | AHMED N U, HARBI H. Mathematical analysis of dynamic models of suspension bridges[J]. SIAM Journal on Applied Mathematics, 1998, 58(3): 853-874. DOI:10.1137/S0036139996308698 |
[3] | MA Q Z, ZHONG C K. Existence of global attractors for the coupled system of suspension bridge equations[J]. Journal of Mathematical Analysis and Applications, 2005, 308: 365-379. DOI:10.1016/j.jmaa.2005.01.036 |
[4] | MA Q Z, ZHONG C K. Existence of strong solutions and global attractors for the coupled suspension bridge equations[J]. Journal of Differential Equations, 2009, 246: 3755-3775. DOI:10.1016/j.jde.2009.02.022 |
[5] | MA Q Z, WANG B L. pullback attractors for the coupled suspension bridge equations[J]. Electronic Journal of Differential Equations, 2011, 2011(16): 1-10. |
[6] | MA Q Z, WANG S P, CHEN X B. Uniform compact for the coupled suspension bridge equation[J]. Mathematics, 2011, 217(14): 6604-6615. |
[7] | KANG J R. Pullback attractors for the non-autonomous coupled suspension bridge equations[J]. Mathematics and Computation, 2013, 219: 8747-8758. DOI:10.1016/j.amc.2013.02.047 |
[8] | KANG J R. Long-time behavior of a suspension bridge equations with past history[J]. Applied Mathematics and Computation, 2015, 265: 509-519. DOI:10.1016/j.amc.2015.04.116 |
[9] | CHUESHOV I, LASIECKA I. Von Karman Evolution Equations:Well-posedness and Long-Time Dynamics[M]. New York: Springer, 2010. |
[10] | PATA V, ZUCCHI A. Attractors for a damped hyperbolic equation with linear memory[J]. Advances in Mathematical Sciences and Applications, 2001, 2: 505-529. |
[11] | PARK J Y, KANG J R. Global attractor for suspension bridge equation with nonlinear damping[J]. Quarterly Applied Mathematics, 2011, 69: 465-475. DOI:10.1090/qam/2011-69-03 |
[12] | 刘世芳, 马巧珍. 具有历史记忆的阻尼吊桥方程强全局吸引子的存在性[J]. 数学物理学报, 2017, 37A(4): 684-697. |
[13] | GIORGI C, RIVERA J E M, PATA V. Global attractors for a semilinear hyperbolic equation in viscoelasticity[J]. Journal of Applied Mathematics and Computation, 2001, 260: 83-99. |
[14] | PARK J Y, KANG J R. Pullback D-attractors for non-autonomous suspension bridge equations[J]. Nonlinear Analysis, 2009, 71: 4618-4623. DOI:10.1016/j.na.2009.03.025 |
[15] | ZHONG C K, MA Q Z, SUN C Y. Existence of strong solutions and global attractors for the suspension bridge equations[J]. Nonlinear Analysis, 2007, 67: 442-454. DOI:10.1016/j.na.2006.05.018 |
[16] | ROBINSON J C. Infinite-Dimensional Dynamical Systems, An Introduction to Dissipative Parabolic PDEs and The Theory of Global Attractors[M]. London: Cambridge University Press, 2001. |
[17] | FABRIZIO M, GIORGI C, PATA V. A new approach to equations with memory[J]. Archive Ration Mechanics and Analysis, 2010, 198: 189-232. DOI:10.1007/s00205-010-0300-3 |