自旋轨道耦合效应是固体材料中的一种相对论效应, 主要有结构反演不对称破缺引起的Rashba自旋轨道耦合、体材料反演不对称破缺引起的Dresselhaus自旋轨道耦合, 以及杂质引起的自旋轨道耦合等3种[1]. Rashba自旋轨道耦合效应可以通过电场进行调控并有望应用于全电学自旋电子器件[2], 因而引起了科研工作者极大的研究兴趣.1990年Datta和Das提出了利用自旋承载信息的自旋场效应晶体管模型, 该模型基于Rashba自旋轨道耦合效应来对器件进行全电场调控[2].但实现自旋场效应晶体管面临着诸多挑战, 如低自旋注入效率、自旋弛豫的控制以及自旋进动的控制等[3].最近有研究结果表明, 一种利用Rashba自旋轨道耦合效应的全电学半导体自旋电子器件在实验上得到了实现[4].
Rashba自旋轨道耦合效应最早在半导体异质结AlGaAs/GaAs、InAs/GaSb中观测到[5-6].随着研究的深入, 研究人员利用角分辨率光电子能谱测量到Au(111)[7]、Bi(111)[8]、Gd(0001)[9]等重金属表面的Rashba自旋轨道耦合的强度.更进一步地, 人们设法在金属表面掺杂, 并从Bi-Ag(111)[10]、Bi-Si(111)[11]等体系中获得了更大的Rashba自旋轨道耦合强度.然而, 在实际应用中, 具有Rashba自旋轨道耦合效应的半导体材料更符合工业上的应用[12].近年, 在极性半导体材料BiTeI中发现了Rashba自旋轨道耦合效应[13-14], 该自旋劈裂源于层间结构.然而, 体材料BiTeI层间的离子键作用阻碍了稳定薄膜的形成, 这恰恰是集成电路中亟需的.因而人们期待在稳定的薄膜中发现强的Rashba自旋轨道耦合效应.
2004年物理学家Geim和Novoselov等人从石墨中剥离出石墨烯[15], 即只有单层碳原子的二维结构晶体.石墨烯优异的性能, 如极强的柔韧性、超强透光性、高热导电率、高电子迁移率等[15], 吸引了大批研究人员的研究.在持续不断的研究热潮下, 科研工作者在石墨烯的研究领域相继取得了可喜的研究成果[16], 并促使了其他二维材料的发现, 如氮化硼[17]、硅烯[18]和单层过渡金属硫化物[19-21]等.尤其是单层过渡金属硫化物由于在纳米电子学、光电子学、谷电子学及自旋电子学等领域中广阔的应用前景[22-24], 引起了广泛的关注.人们致力于研究单层过渡金属硫化物在
本文采用第一性原理计算方法, 系统研究了电场对二维过渡金属硫化物中Rashba自旋轨道耦合效应的调控作用, 并揭示了非极性二维过渡金属硫化物
采用基于密度泛函理论的第一性原理计算模拟软件包Vienna Ab-initio Simulation Package (VASP)进行理论计算[28], 研究自旋轨道耦合效应[29-30].交换关联能采用广义梯度近似Generalized Gradient Approximation (GGA)中的Perdew-Burke-Ernzerhof (PBE)方法[31].我们对
本文计算了6种二维过渡金属硫化物
过渡金属硫化物(Transition-Metal Dichalcogenides, TMDs)的块体材料与石墨类似, 层与层之间由微弱的范德瓦尔斯力相互作用结合在一起.经过物理剥离或化学制取的方法[33-34], 可以获得单层的TMDs结构, 即二维过渡金属硫化物
由于二维过渡金属硫化物
通过第一性原理的计算结果, 分析单层WTe
为了更好地研究二维过渡金属硫化物
更进一步地, 我们对第一性原理的计算结果进行详细分析.根据图 1(e)及公式
本文采用基于密度泛函理论的第一性原理计算, 研究了二维过渡金属硫化物
[1] | WINKLER R. Spin-Orbit Coupling Effects in Two-Dimensional Electron and Hole Systems[M]. Berlin: Springer, 2003. |
[2] | DATTA S, DAS B. Electronic analog of the electro-optic modulator[J]. Appl Phys Lett, 1990, 56(7): 665-667. DOI:10.1063/1.102730 |
[3] | MANCHON A, KOO H C, NITTA J, et al. New perspectives for Rashba spin-orbit coupling[J]. Nat Mater, 2015, 14(9): 871-882. DOI:10.1038/nmat4360 |
[4] | CHUANG P, HO S-C, SMITH L W, et al. All-electric all-semiconductor spin field-effect transistors[J]. Nat Nanotechnol, 2015, 10(1): 35-39. DOI:10.1038/nnano.2014.296 |
[5] | NITTA J, AKAZAKI T, TAKAYANAGI H, et al. Gate control of spin-orbit interaction in an inverted In0.53Ga0.47As/In0.52Al0.48As heterostructure[J]. Phys Rev Lett, 1997, 78(7): 1335-1338. DOI:10.1103/PhysRevLett.78.1335 |
[6] | STEIN D, KLITZING K V, WEIMANN G. Electron spin resonance on GaAs-AlxGa1-xAs hetero structures[J]. Phys Rev Lett, 1983, 51(2): 130-133. DOI:10.1103/PhysRevLett.51.130 |
[7] | LASHELL S, MCDOUGALL B A, JENSEN E. Spin splitting of an Au(111) surface state band observed with angle resolved photoelectron spectroscopy[J]. Phys Rev Lett, 1996, 77(16): 3419-3422. DOI:10.1103/PhysRevLett.77.3419 |
[8] | KOROTEEV Y M, BIHLMAYER G, GAYONE J E, et al. Strong spin-orbit splitting on Bi surfaces[J]. Phys Rev Lett, 2004, 93(4): 046403 DOI:10.1103/PhysRevLett.93.046403 |
[9] | KRUPIN O, BIHLMAYER G, STARKE K, et al. Rashba effect at magnetic metal surfaces[J]. Phys Rev B, 2005, 71(20): 201403 DOI:10.1103/PhysRevB.71.201403 |
[10] | AST C R, HENK J, ERNST A, et al. Giant spin splitting through surface alloying[J]. Phys Rev Lett, 2007, 98(18): 186807 DOI:10.1103/PhysRevLett.98.186807 |
[11] | SAKAMOTO K, KAKUTA H, SUGAWARA K, et al. Peculiar Rashba splitting originating from the twodimensional symmetry of the surface[J]. Phys Rev Lett, 2009, 103(15): 156801 DOI:10.1103/PhysRevLett.103.156801 |
[12] | GIERZ I, SUZUKI T, FRANTZESKAKIS E, et al. Silicon surface with giant spin splitting[J]. Phys Rev Lett, 2009, 103(4): 046803 DOI:10.1103/PhysRevLett.103.046803 |
[13] | ISHIZAKA K, BAHRAMY M S, MURAKAWA H, et al. Giant Rashba-type spin splitting in bulk BiTeI[J]. Nat Mater, 2011, 10(7): 521-526. DOI:10.1038/nmat3051 |
[14] | BAHRAMY M S, ARITA R, NAGAOSA N. Origin of giant bulk Rashba splitting:Application to BiTeI[J]. Phys Rev B, 2011, 84(4): 041202 |
[15] | NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669. DOI:10.1126/science.1102896 |
[16] | NAIR R R, BLAKE P, GRIGORENKO A N, et al. Fine structure constant defines visual transparency of graphene[J]. Science, 2008, 320(5881): 1308-1308. DOI:10.1126/science.1156965 |
[17] | PACIL D, MEYER J C, GIRIT Ç O, et al. The two-dimensional phase of boron nitride:Few-atö mic-layer sheets and suspended membranes[J]. Appl Phys Lett, 2008, 92(13): 133107 DOI:10.1063/1.2903702 |
[18] | VOGT P, DE PADOVA P, QUARESIMA C, et al. Silicene:Compelling experimental evidence for graphenelike two-dimensional silicon[J]. Phys Rev Lett, 2012, 108(15): 155501 DOI:10.1103/PhysRevLett.108.155501 |
[19] | WANG Q H, KALANTAR-ZADEH K, KIS A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides[J]. Nat Nanotechnol, 2012, 7(11): 699-712. DOI:10.1038/nnano.2012.193 |
[20] | KUC A, ZIBOUCHE N, HEINE T. Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2[J]. Phys Rev B, 2011, 83(24): 245213 |
[21] | CONLEY H J, WANG B, ZIEGLER J I, et al. Bandgap Engineering of Strained Monolayer and Bilayer MoS2[J]. Nano Lett, 2013, 13(8): 3626-3630. |
[22] | MAK K F, SHAN J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides[J]. Nat Photonics, 2016, 10(4): 216-226. DOI:10.1038/nphoton.2015.282 |
[23] | RADISAVLJEVIC B, RADENOVIC A, BRIVIO J, et al. Single-layer MoS2 transistors[J]. Nat Nanotechnol, 2011, 6(3): 147-150. DOI:10.1038/nnano.2010.279 |
[24] | EDA G, MAIER S A. Two-dimensional crystals:Managing light for optoelectronics[J]. ACS Nano, 2013, 7(7): 5660-5665. DOI:10.1021/nn403159y |
[25] | XIAO D, LIU G B, FENG W X, et al. Coupled spin and valley physics in monolayers of MoS2 and other group-Ⅵ dichalcogenides[J]. Phys Rev Lett, 2012, 108(19): 196802 DOI:10.1103/PhysRevLett.108.196802 |
[26] | ZENG H L, DAI J F, YAO W, et al. Valley polarization in MoS2 monolayers by optical pumping[J]. Nat Nanotechnol, 2012, 7: 490-493. DOI:10.1038/nnano.2012.95 |
[27] | CHENG Y C, ZHU Z Y, TAHIR M, et al. Spin-orbit-induced spin splittings in polar transition metal dichalcogenide monolayers[J]. Europhys Lett, 2013, 102(5): 57001 DOI:10.1209/0295-5075/102/57001 |
[28] | KRESSE G, JOUBERT D. From utrasoft pseudopotentials to the projector augmentedwave method[J]. Phys Rev B, 1999, 59(3): 1758-1775. DOI:10.1103/PhysRevB.59.1758 |
[29] | GONG S J, CAI J, YAO Q F, et al. Orbital control of Rashba spin orbit coupling in noble metal surfaces[J]. J Appl Phys, 2016, 119(12): 125310 DOI:10.1063/1.4945320 |
[30] | GONG S J, DUAN C G, ZHU Y, et al. Controlling Rashba spin splitting in Au (111) surface states through electric field[J]. Phys Rev B, 2013, 87(3): 035403 |
[31] | PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Phys Rev Lett, 1996, 77(18): 3865-3868. DOI:10.1103/PhysRevLett.77.3865 |
[32] | SANNA S, H LSCHER R, SCHMIDT W G. Temperature dependent LiNbO3(0001):Surface reconstruction and surface charge[J]. Appl Surf Sci, 2014, 301: 70-78. DOI:10.1016/j.apsusc.2014.01.104 |
[33] | VAN DER ZANDE A M, HUANG P Y, CHENET D A, et al. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide[J]. Nat Mater, 2013, 12(6): 554-561. DOI:10.1038/nmat3633 |
[34] | MAK K F, LEE C, HONE J, et al. Atomically thin MoS2:A new direct-gap semiconductor[J]. Phys Rev Lett, 2010, 105(13): 136805 DOI:10.1103/PhysRevLett.105.136805 |