This work focuses on the weight one Eisenstein series derived from the genus theory of imaginary quadratic fields. The relevant background material for this paper is provided in Section 1. Sections 2 and 3 contain a brief review of the genus characters of Gauss, correspondence between the ideals and the quadratic forms of the quadratic fields, and some identities derived from the genus theory. In Sections 4 and 5, we characterize the subspaces of Eisenstein series generated from the genus theory and bring out their connection with the Dedekind zeta function of the genus field of quadratic fields. Finally, in the last section, we derive additional results by twisting the Eisenstein series with primitive Dirichlet characters.
1 PreliminariesLet
(1)
(2)
(3)
(4)
Let
| $ \begin{align*} \chi'(k)= \begin{cases} \chi(k), \quad&\text{if gcd} (k, N')=1, \\ 0, \quad&\text{if gcd}(k, N')>1. \end{cases} \end{align*} $ |
We let
We say that
Let
Define
| $ c_0(\chi) =-\frac{1}{N}\sum\limits_{n=1}^{N-1}n\chi(n). $ |
Let
| $ c_0(\chi_D)= \begin{cases} \dfrac{2h}{w}, \quad&\text{if} \ \ D<0, \\ 0, \quad&\text{if} \ \ D>0, \end{cases} $ |
where
It is known that (cf. [2], p. 347 and p. 349): A character
Let
Suppose
| $ {\frak f}(\tau;\varphi, \psi): =\varphi(0)c_0(\psi)+2\sum\limits_{m, n=1}^{\infty}\varphi(m)\psi(n)q^{mn}. $ |
We note that if
| $ {\frak f}(\tau;\chi_1, \psi) =c_0(\psi)+2\sum\limits_{m, n=1}^{\infty}\psi(n)q^{mn} =c_0(\psi)+2\sum\limits_{n=1}^{\infty}\psi(n)\frac{q^n}{1-q^n}. $ |
In particular,
| $ \begin{equation} {\frak f}(\tau;\chi_1, \chi_D) =c_0(\chi_{D})+2\sum\limits_{m, n=1}^{\infty}\chi_D(n)q^{mn} =c_0(\chi_{D})+2\sum\limits_{n=1}^{\infty}\chi_D(n)\frac{q^n}{1-q^n}. \end{equation} $ | (1.1) |
Let
| $ \Gamma_0(N)= \left\{\!\begin{pmatrix} a&b\\ c&d \end{pmatrix} :a, b, c, d\in\mathbb Z, ad-bc=1, N\mid c\right\}. $ |
Let
(1)
(2)
(3)
We recall that
| $ a\equiv d\equiv 1 (\text{mod N}) \quad \text{and} \quad N\mid c. $ |
Thus, if
| $ f\Big(\frac{a\tau+b}{c\tau+d}\Big)=(c\tau+d)^k f(\tau), $ |
where
Theorem 1.1 Suppose
| $ {\frak f}(\tau;\varphi, \psi)\in {\bf{M}}_1(\Gamma_0(MN), \varphi\psi). $ |
A proof based on Weil's converse theorem for modular forms can be found in [3, Theorem 9.1].
Suppose
Corollary 1.2 If
From (1.1),
| $ \begin{equation} {\frak f}(\tau;\chi_1, \chi_{-D})=\frac{2h}{w}+ 2\sum\limits_{n=1}^{\infty}\Big(\frac{-D}{n}\Big)\frac{q^n}{1-q^n}, \end{equation} $ | (1.2) |
where
| $ \begin{equation} h+w\sum\limits_{n=1}^{\infty}\Big(\frac{-D}{n}\Big)\frac{q^n}{1-q^n} =\sum\limits_{i=1}^h \sum\limits_{m, n=-\infty}^{\infty}q^{Q_i(m, n)}, \end{equation} $ | (1.3) |
where
The definition of the class number
For later use, we remind the reader of the definition of a Mellin transform. For
| $ f(q)=\sum\limits_{n=0}^{\infty} a_n q^n, $ |
the Mellin transform of
| $ M(s, f): = \frac{{{{(2\pi )}^s}}}{{\Gamma (s)}}\int_0^\infty {(f({\rm{i}}y) - {a_0}){y^s}\frac{{{\rm{d}}y}}{y}.} $ |
Then
| $ M(s, f)=\sum\limits_{n=1}^{\infty}\frac{a_n}{n^s}. $ |
Let
We say the non-zero ideals
| $ (\alpha){\frak a}=(\beta){\frak b}, $ |
where
The equivalence relation
We begin with a lemma.
Lemma 2.1[5]54 Every discriminant can be written uniquely, modulo permutations, as the product of prime discriminants.
Let
| $ \chi({\frak p})=\chi_{d_1}({\frak p})=\left(\frac{d_1}{N{\frak p}}\right) $ |
for any prime ideal
We also introduce
| $ \chi_{d_1}({\frak p})=\chi_{d_2}({\frak p}). $ |
For a given decomposition of
| $ L_{\mathbb F}(s, \chi) =\sum\limits_{{\frak a}}\frac{\chi({\frak a})}{(N{\frak a}) ^s}. $ |
Recall that the
| $ L(s, \chi)=\sum\limits_{n=1}^{\infty}\frac{\chi(n)}{n^s}. $ |
We have the following result due to Kronecker.
Theorem 2.2
| $ L_{\mathbb F}(s, \chi) =L(s, \chi_{d_1})L(s, \chi_{d_2}). $ |
The proof is given in [5, p. 57].
Applying the inverse Mellin transformation to the above identity, we obtain
| $ \begin{equation} \sum\limits_{{\frak a}}\chi({\frak a})q^{N{\frak a}} =\frac12\left({\frak f}(\tau;\chi_{d_1}, \chi_{d_2})-\chi_{d_1}(0)c_0(\chi_{d_2})\right). \end{equation} $ | (2.1) |
We say that two ideals
For
| $ {\frak f}^{\circ}(\tau;\chi):= \frac12({\frak f}(\tau;\chi_{d_1}, \chi_{d_2})-\chi_{d_1}(0)c_0(\chi_{d_2})). $ |
We now re-write (2.1) as
| $ \begin{equation} {\frak f}^{\circ}(\tau;\chi) =\sum\limits_{{\frak a}}\chi({\frak a})q^{N{\frak a}} =\sum\limits_{i=1}^{2^{k-1}}\chi({\frak G}_i)\sum\limits_{{\frak a}\in{\frak G}_i}q^{N{\frak a}}. \end{equation} $ | (2.2) |
Let
Let
Theorem 3.1 Let
| $ {\frak f}(\tau;\chi)\in{\bf M}_1(\Gamma_0(D), \chi_{-D}). $ |
Using the orthogonal relation of the genus characters, we derive from (2.2)
| $ \begin{equation} \sum\limits_{{\frak a}\in{\frak G}_k}q^{N{\frak a}} =\frac{1}{2^{k-1}}\sum\limits_{\chi\in{\frak G}^*}\overline{\chi({\frak G}_k)} {\frak f}^{\circ}(\tau;\chi). \end{equation} $ | (3.1) |
We now give a more explicit expression for the sum on the left hand side of (3.1). First, we need to review some basic facts about associating the ideals with quadratic forms. We will confine the discussion to imaginary quadratic fields.
We now generate a family of
| $ Q_1(x, y), Q_2(x, y), \cdots, Q_h(x, y). $ |
For each
| $ Q_i(x, y)=\frac{N(\alpha_i x+\beta_i y)}{N{{\frak a}_i}}. $ |
A different choice of
Let
| $ {\frak a}\shortmid\!\rightarrow (\xi_{{\frak a}}) $ |
is a bijection between the elements of
| $ N{\frak a}=\frac{N\xi_{{\frak a}}}{N\frak a^*}=\frac{N(m\alpha+n\beta)}{N{\frak a}^*} =Q_{{\frak a}^*}(m, n), $ |
where
We note that if
| $ \xi\shortmid\!\rightarrow (\xi) $ |
is a
Lemma 3.2
| $ w\sum\limits_{{\frak a}\in\bf A}q^{N{\frak a}} =\sum\limits_{(m, n)\ne(0, 0)}q^{Q_{{\frak a}^*}(m, n)}. $ |
We say
| $ w\sum\limits_{{\frak a}\in{\frak G}_k}q^{N{\frak a}}=\sum\limits_{Q\in\frak G_k}\sum\limits_{(m, n)\ne(0, 0)}q^{Q(m, n)}. $ |
From (2.2), we have
Theorem 3.3
| $ \sum\limits_{Q\in{\frak G}_k}\sum\limits_{(m, n)\ne(0, 0)}q^{Q(m, n)} =\frac{w}{2^{k-1}}\sum\limits_{\chi\in{\frak G}^*}\overline{\chi({\frak G}_k)} {\frak f}^{\circ}(\tau;\chi). $ |
We can re-write the left hand side of the above identity as
| $ \sum\limits_{n=1}^{\infty}c_k(n)q^n=\sum\limits_{Q\in\frak G_k}\sum\limits_{(m, n)\ne(0, 0)}q^{Q(m, n)}, $ |
where
| $ \{(x, y)\in\mathbb Z^2\backslash\{(0, 0)\}:n=Q(x, y), Q\in {\frak G}_k\}. $ |
Each
| $ {\frak f}^{\circ}(\tau;\chi)=\sum\limits_{n=1}^{\infty}q^n \sum\limits_{m|n}\chi_{d_1}(n/m)\chi_{d_2}(m). $ |
Comparing the coefficients on both sides, we obtain an explicit formula expressing
Corollary 3.4
| $ \sum\limits_{Q\in{\frak G}_1}\sum\limits_{(m, n)\ne(0, 0)}q^{Q(m, n)}=\frac{w}{2^{k-1}}\sum\limits_{\chi\in{\frak G}^*}{\frak f}^{\circ}(\tau, \chi) $ |
and
| $ c_1(n)=\sum\limits_{\chi\in{\frak G}^*}\sum\limits_{m|n}\chi_{d_1}(n/m)\chi_{d_2}(m). $ |
As a corollary to the above theorem, we observe that for the important cases in which every genus consists of a single quadratic form, the sum
We note that, with the exception of
| $ \begin{equation} \sum\limits_{Q\in{\frak G}_k}\sum\limits_{m, n=-\infty}^{\infty}q^{Q(m, n)} =h^*+w\sum\limits_{{\frak a}\in{\frak G}_k}q^{N{\frak a}} =\frac{w}{2^{k}}\sum\limits_{\chi\in{\frak G}^*}\overline{\chi({\frak G}_k)} {\frak f}(\tau;\chi), \end{equation} $ | (3.2) |
where
Corollary 3.5
| $ \sum\limits_{Q\in{\frak G}_k}\sum\limits_{m, n=-\infty}^{\infty}q^{Q(m, n)} \in{\bf M}_1(\Gamma_0(D), \chi_{-D}). $ |
The results in the next section will explain further the role played by the quadratic forms on the structure of the subspace of the Eisenstein series in
Let
It is established in [7 p. 137, Proposition 28] that
| $ {\bf M}_k(\Gamma_1(N))=\bigoplus\limits_{\chi} \bf M_k(\Gamma_0(N), \chi), $ |
where the sum is over all Dirichlet characters
Each
| $ M_k(\Gamma_0(N), \chi)=\bf E_k(\Gamma_0(N), \chi)\oplus \bf S_k(\Gamma_0(N), \chi), $ |
where
Choose
| $ {\frak f}(\tau;\varphi, \psi, t)={\frak f}(t\tau;\varphi, \psi). $ |
The structure of
Let
| $ \{{\frak f}(\tau;\varphi, \psi, t): (\varphi, \psi, t)\in A_N, \chi=\varphi\psi\} $ |
forms a basis of
Decompose
| $ \bf E_1(\Gamma_0(N), \chi)=\bf E_1^{\rm old}(\Gamma_0(N), \chi)\oplus\bf E_1^{\rm new}(\Gamma_0(N), \chi), $ |
where
We now take
Theorem 4.1 Let
Hence, the dimension of
To prove this result, we recall: A real character
We now prove the theorem.
Proof Suppose
To establish the conclusion, it suffices to show that if
We begin with the observation:
| $ \varphi^2(n)\psi^2(n)=\chi_{_{-D}}^2(n)=1 $ |
for all
From this observation, we will deduce that both
Consider first the case
Since
| $ n=n_1d_1+n_2d_2+1. $ |
It is easy to check that gcd
| $ \varphi^2(n)=\varphi^2(n_1d_1+n_2d_2+1) =\varphi^2(n_2d_2+1)=1. $ |
This shows that
The identical argument also establishes that
From the assumption that
| $ \varphi=\chi_{d_1}, \quad \psi=\chi_{d_2}. $ |
We now move on to the remaining case:
| $ -D=p_1p_2\cdots p_k, $ |
where
There are two cases to consider.
Case 1.
Case 2. gcd
We look at the sub-case
Then,
| $ n=2n_1d_1+2n_2d_2+1. $ |
Again, it can be easily verified that gcd
| $ \varphi^2(n)=\varphi^2(2n_1d_1+2n_2d_2+1) =\varphi^2(2n_2d_2+1)=1. $ |
This shows that
Similarly,
Since
We now examine the case
Then, as before, we deduce that
| $ n=2n_1d_1+4n_2d_2+1, $ |
we conclude that
We remark that without modification the above proof shows:
Let
The reason we confine to the case of negative discriminants is because, as mentioned earlier,
We also have, from (3.2) and Corollary 3.4, the following result.
Corollary 4.2 For each
| $ {\frak q}_k(\tau)=\sum\limits_{Q\in{\frak G}_k}\sum\limits_{m, n=-\infty}^{\infty}q^{Q(m, n)}. $ |
Then
| $ \{{\frak q}_k(\tau): k= 1, 2, \cdots, 2^{k-1}\} $ |
forms a basis of
This clarifies the role of weight one modular forms generated from the genus theory of the imaginary quadratic fields in the scheme of weight one modular forms.
5 Genus fieldsTo acquire a more complete picture of what has been developed so far, it seems fitting to bring out the relevance of the Eisenstein series
(1)
(2)
(3)
We define the genus field
| $ \mathbb K:=\mathbb Q(\sqrt D, \sqrt P_2, \cdots, \sqrt P_k). $ |
We refer readers to [8, p. 121, Theorem 6.1] for properties of the genus field.
Let
| $ \zeta_{\mathbb K}(s):=\sum\limits_{{\frak a}}\frac{1}{N^s{\frak a}}, $ |
where
For each
| $ L_{\mathbb F}(s, \chi):=L(s, \chi_{d_1})L(s, \chi_{d_2}). $ |
Then, from the properties of the Hilbert class field theory (cf. [9, p. 70]), we derive the following identity:
| $ \zeta_{\mathbb K}(s)=\prod\limits_{\chi\in{\frak G}^*}L_{\mathbb F}(s, \chi). $ |
All the above facts are valid for any quadratic field. We now focus on imaginary quadratic fields. Let
| $ M(s, {\frak f}(\tau;\chi) )=L(s, \chi_{d_1})L(s, \chi_{d_2})=L_{\mathbb F}(s, \chi). $ |
The relevance of the space
Theorem 5.1
| $ \zeta_{\mathbb K}(s)=\prod\limits_{\chi\in{\frak G}^*}M(s, {\frak f}(\tau;\chi) ). $ |
We recall
| $ {\frak f}(\tau;\varphi, \psi): =\varphi(0)c_0(\psi)+2\sum\limits_{m, n=1}^{\infty}\varphi(m)\psi(n)q^{mn}. $ |
Let
| $ {\frak f}_{\chi}(\tau;\varphi, \psi): =\chi(0)\varphi(0)c_0(\psi)+2\sum\limits_{m, n=1}^{\infty}\chi(mn)\varphi(m)\psi(n)q^{mn}. $ |
We remind our readers that the symbol
We begin by stating a result which follows readily from Theorem 1.1 and Proposition 17(b) of [9, p. 127].
Theorem 6.1 Suppose
Here we do not require gcd
In particular, we have:
Corollary 6.2 If
| $ {\frak f}_{\varphi}(\tau;\chi_1, \chi_{-D})\in {\bf{M}}_1(\Gamma_0(M^2D), \varphi^2\chi_{-D}). $ |
We now examine the quantity
Let
| $ L_{\mathbb F}(s, \varphi\circ N)=\sum\limits_{{\frak a}}\frac{\varphi(N({\frak a}))}{N^s({\frak a})}. $ |
Theorem 6.3
| $ L_{\mathbb F}(s, \varphi\circ N)=L(s, \varphi)L(s, \varphi\chi_{D}), $ |
where
This identity holds regardless whether
Proof As before,
Since both
| $ \begin{align*} \sum\limits_{{\frak a}}\frac{\varphi(N{\frak a})}{N^s({\frak a})} =\, &\prod\limits_{{\frak p}}\Big(1-\frac{\varphi(N{\frak p})}{N^s \frak p}\Big)^{-1} \\ =\, &\prod\limits_{\chi_D(p)=1}\Big(1-\frac{\varphi(N{\frak p})}{N^s {\frak p}}\Big)^{-1}\prod\limits_{\chi_D(p)=-1} \Big(1-\frac{\varphi(N{\frak p})}{N^s {\frak p}}\Big)^{-1}\prod\limits_{\chi_D(p)=0} \Big(1-\frac{\varphi(N{\frak p})}{N^s {\frak p}}\Big)^{-1}\\ \nonumber =\, &\prod\limits_{\chi_D(p)=1}\Big(1-\frac{\varphi(p)}{p^s}\Big)^{-2} \prod\limits_{\chi_D(p)=-1}\Big(1-\frac{\varphi^2(p)}{p^{2s}}\Big)^{-1}\prod\limits_{\chi_D(p)=0}\Big(1-\frac{\varphi(p)}{p^s}\Big)^{-1} \\ =\, &\prod\limits_{\chi_D(p)=1} \Big(1-\frac{\varphi(p)\chi_D(p)}{p^s }\Big)^{-1} \prod\limits_{\chi_D(p)=-1} \Big(1-\frac{\varphi(p)\chi_D(p)}{p^{s}}\Big)^{-1}\\ &\times \prod\limits_{\chi_D(p)=1} \Big(1-\frac{\varphi(p)}{p^{s}}\Big)^{-1} \prod\limits_{\chi_D(p)=-1} \Big(1-\frac{\varphi(p)}{p^{s}}\Big)^{-1}\prod\limits_{\chi_D(p)=0}\Big(1-\frac{\varphi(p)}{p^s}\Big)^{-1}\\ =\, &L(s, \varphi\chi_{D})L(s, \varphi). \end{align*} $ |
Since we can re-write the above identity as
| $ \sum\limits_{{\frak a}}\frac{\varphi(N({\frak a}))}{N^s({\frak a})} =\sum\limits_{m, n=1}^{\infty}\frac{\varphi(mn)\chi_D(n)}{(mn)^s}, $ |
the inverse Mellin transform yields
| $ \begin{align} \sum\limits_{{\frak a}}\varphi(N({\frak a}))q^{N(\frak a)}&=\sum\limits_{m, n=1}^{\infty}\varphi(mn)\chi_D(n)q^{mn} \nonumber\\ &=\sum\limits_{n=1}^{\infty}q^n\sum\limits_{k|n}\varphi(k)\chi_D(n/k). \end{align} $ | (6.1) |
Thus,
| $ \begin{equation} {\frak f}_{\varphi}(\tau;\chi_1, \chi_D)=\varphi(0)c_0(\chi_D)+2\sum\limits_{{\frak a}}\varphi(N({\frak a}))q^{N({\frak a})}. \end{equation} $ | (6.2) |
In particular, if
| $ {\frak f}_{\varphi}(\tau;\chi_1, \chi_{-D})=\frac{2h}{w}\varphi(0)+2\sum\limits_{{\frak a}}\varphi(N({\frak a}))q^{N({\frak a})}. $ |
Let
We deduce the following theorem.
Theorem 6.4 Suppose gcd
| $ \sum\limits_{{\frak a}\in I_k(M)} q^{N({\frak a})} =\sum\limits_{j=1}^{\infty}\chi_D(j)\frac{q^{jk}}{1-q^{jM}}. $ |
Proof We note that the identity holds for
Assume
| $ \frac12{\frak f}_{\varphi_i}(\tau;\chi_1, \chi_D) =\sum\limits_{k\in\mathbb Z^*_M}\varphi_i(k)\sum\limits_{{\frak a}\in I_k(M)} q^{N({\frak a})}=\sum\limits_{n=1}^{\infty}q^n\sum\limits_{k|n}\varphi_i(k)\chi_D(n/k). $ |
From (6.1) and the orthogonal relation of
| $ \begin{align} \sum\limits_{{\frak a}\in I_k(M)} q^{N(\frak a)}&=\frac{1}{2\phi(M)}\sum\limits_{i=1}^{\phi(M)}\overline{\varphi(k)} {\frak f}_{\varphi_i}(\tau;\chi_1, \chi_D) \nonumber\\ &=\frac{1}{\phi(M)}\sum\limits_{n=1}^{\infty} \Big(\sum\limits_{m|n}\sum\limits_{i=1}^{M-1}\varphi_i(m)\overline{\varphi_i(k)}\chi_D(n/m)\Big)q^n. \end{align} $ | (6.3) |
We note
| $ \sum\limits_{i=1}^{M-1}\varphi_i(m)\overline{\varphi_i(k)}=\begin{cases} \phi(M), \quad&\text{if} \ \ m\equiv k~(\text{mod} M), \\[0.1in] 0, \quad&\text{otherwise.} \ \ \end{cases} $ |
Now let
| $ \begin{align} \sum\limits_{{\frak a}\in I_k(M)} q^{N({\frak a})} &=\sum\limits_{l=0}^{\infty}\sum\limits_{j=1}^{\infty}\chi_D(j) q^{j(lM+k)} \nonumber \\ &=\sum\limits_{j=1}^{\infty}\chi_D(j)q^{jk}\sum\limits_{l=1}^{\infty}q^{jlM} \nonumber \\ &=\sum\limits_{j=1}^{\infty}\chi_D(j)\frac{q^{jk}}{1-q^{jM}}. \end{align} $ | (6.4) |
This is a Lambert series for a generating function counting the number of integral ideals with their norms congruent to
Corollary 6.5 Let
We note that every
Acknowledgements The work constitutes part of a series of lectures the author delivered at Luo Yang Normal University and East China Normal University on June 16 and 26, 2017. The author would like to thank Professors Hong-cun Zhai and Zhi-guo Liu for their support and hospitality. A special gratitude goes to Dan Dan Chen for her assistance in reformatting the original manuscript according to the style of the journal.
| [1] |
COHN H. Advanced Number Theory[M]. New York: Dover, 1980.
|
| [2] |
BOREVICH Z I, SHAFAREVICH I R. Number Theory[M]. New York: Academic Press, 1966.
|
| [3] |
SHEN L C. On Eisenstein series generated from twisting of the geometric series[J]. Journal of East China Normal University (Natural Science), 2017, 6: 1-24. DOI:10.1142/ecnusr |
| [4] |
SHEN L C. On a class of q-series related to quadratic forms[J]. Bulletin of the Institute of Mathematics Academia Sinica, 1998, 26(2): 111-126. |
| [5] |
SIEGEL C L. Lectures on Advanced Analytic Number Theory[M]. Bombay: Tata Institute, 1961.
|
| [6] |
SHEN L C. On separation of quadratic forms on the imaginary quadratic field in its Hilbert class fields[J]. Proceedings of the American Mathematical Society, 2008, 136(9): 3061-3067. DOI:10.1090/S0002-9939-08-09287-3 |
| [7] |
DIAMOND F, SHURMAN J. A First Course in Modular Forms[M]. New York: Springer, 2005.
|
| [8] |
COX D. Primes of the forms x2 +ny2[M]//Fermat, Class Field Theory, and Complex Multiplication. New York: Wiley, 1989.
|
| [9] |
KOBLITZ N. Introduction to Elliptic Curves and Modular Forms[M]. 2nd ed. New York: Springer-Verlag, 1993.
|

