设
近年来关于伪黎曼空间型中子流形的研究引起了广泛关注并取得了丰富的成果.许多问题从黎曼流形推广到了伪黎曼流形的情形, 并将结果不断地推广到局部对称伪黎曼的情形, 即曲率张量分量的协变微分
文献[2]中Goddard猜想指出de Sitter空间
定理A 设
$ 0\leqslant S \leqslant\frac{4(2n-1)}{3\sqrt{2(n-1)}}(c_{2}-c_{1})(p-1)p+np(c_{2}-2c_{1}). $ |
特别地, 若
定理B
$ R_{ijij}\geqslant\frac{4(2n-1)}{3n\sqrt{2(n-1)}} (c_{2}-c_{1})(p-1)(p+1)+(p+1)c_{2}-(2p+1)c_{1}, $ |
则
本文的第一个工作就是将文献[8]的定理A和定理B中的极大条件减弱, 研究了具有平行平均曲率向量的伪脐类空子流形, 得到了在完备条件下的第二基本形式模长平方的拼挤定理和在紧致条件下
定理0.1 设
$ 0\leqslant S \leqslant\frac{4(c_{2}-c_{1})^{2}n^{4}H^{2}p} {(3nc_{1}-3nH^{2}-8(c_{2}-c_{1})(n-1)^{\frac{1}{2}}(p-1))^{2}}. $ | (1) |
特别地, 当
若
研究子流形的普遍做法是探求关于子流形的曲率(如截面曲率, 平均曲率或Ricci曲率等)或第二基本形式模长平方的拼挤条件, 从而得到关于
定理0.2 设
特别地, 当
设
$ 1\leqslant i, j, k, \cdots\leqslant n;\;\;\;n+1\leqslant\alpha, \beta, \gamma, \cdots\leqslant n+p. $ |
于是
$ ds_{N}^{2}=\sum\limits_{i}\omega_{i}^{2}-\sum\limits_{\alpha}\omega_{\alpha}^{2}, \quad ds_{M}^{2}=\sum\limits_{i}\omega_{i}^{2}. $ |
设
$ \omega_{\alpha}=0, \;\;\;\omega_{\alpha i}=\sum\limits_{j}h_{ij}^{\alpha}\omega_{j}, \;\;\;h_{ij}^{\alpha}=h_{ji}^{\alpha}. $ |
分别记
$ \begin{align*} h=\sum\limits_{\alpha, i, j}h_{ij}^{\alpha}\omega_{i}\otimes\omega_{j} \otimes e_{\alpha}, \;\;\;\boldsymbol{H}=\frac{1}{n}\sum\limits_{\alpha} \Big(\sum\limits_{i}h_{ii}^{\alpha}\Big)e_{\alpha}, \end{align*} $ |
$ R_{ijkl}=K_{ijkl}-\sum\limits_{\alpha}(h_{ik}^{\alpha}h_{jl}^{\alpha}-h_{il}^{\alpha}h_{jk}^{\alpha}), $ | (2) |
$ R_{\alpha\beta kl}=K_{\alpha\beta kl}+\sum\limits_{i}(h_{ik}^{\alpha}h_{il}^{\beta}-h_{il}^{\alpha}h_{ik}^{\beta}), $ | (3) |
$ R_{ij}=\sum\limits_{k}K_{ikjk}+\sum\limits_{\alpha, k}h_{ik}^{\alpha}h_{kj}^{\alpha}-\sum\limits_{\alpha, k}h_{ij}^{\alpha}h_{kk}^{\alpha}. $ | (4) |
以下记
用
$ h_{ijk}^{\alpha}-h_{ikj}^{\alpha}=-K_{\alpha ijk}, $ | (5) |
$ h_{ijkl}^{\alpha}-h_{ijlk}^{\alpha}=\sum\limits_{m}h_{mi}^{\alpha}R_{mjkl} +\sum\limits_{m}h_{mj}^{\alpha}R_{mikl}-\sum\limits_{\beta}h_{ij} ^{\beta}R_{\beta\alpha kl}. $ | (6) |
因为
$ K_{\alpha ijkl}=-\sum\limits_{\beta}K_{\alpha\beta jk}h_{il}^{\beta}-\sum\limits_{\beta}K_{\alpha i\beta k}h_{jl}^{\beta}-\sum\limits_{\beta}K_{\alpha ij\beta}h_{kl}^{\beta}-\sum\limits_{m}K_{mijk}h_{ml}^{\alpha}. $ | (7) |
定义
$ \begin{align} \frac{1}{2}\Delta S&=\sum\limits_{\alpha, i, j, k}(h_{ijk}^{\alpha})^{2}+\sum\limits_{\alpha}\sum\limits_{i, j}h_{ij}^{\alpha}\Delta h_{ij}^{\alpha}\notag\\ &=\sum\limits_{\alpha, i, j, k}(h_{ijk}^{\alpha})^{2}+ \sum\limits_{\alpha, i, j, k}h_{ij}^{\alpha}h_{kkij}^{\alpha}+\sum\limits_{ \alpha, \beta}\sum\limits_{i, j, k}h_{ij}^{\alpha}h_{kk}^{\beta}K_{\alpha ij\beta}\notag\\ &\;\;\;+4\sum\limits_{\alpha, \beta}\sum\limits_{i, j, k}h_{ij}^{\alpha}h_{kj}^{\beta}K_{\alpha\beta ik}+\sum\limits_{\alpha, \beta}\sum\limits_{i, j, k}h_{ij}^{\alpha}h_{ij}^{\beta}K_{\alpha k\beta k}+\sum\limits_{\alpha, \beta}[\text{tr}(H_{\alpha}H_{\beta})]^{2}\notag\\ &\;\;\;+2\sum\limits_{\alpha, \beta}[\text{tr}(H_{\alpha}^{2}H_{\beta}^{2})-\text{tr}(H_{\alpha}H_{\beta})^{2}]-\sum\limits_{\alpha, \beta} \text{tr}(H_{\alpha}^{2}H_{\beta}){\rm tr}(H_{\beta})\notag\\ &\;\;\;+2\sum\limits_{\alpha}\sum\limits_{i, j, k, m}h_{ij}^{\alpha}(h_{mk}^{\alpha}K_{mijk}+h_{mi}^{\alpha}K_{mkjk}). \end{align} $ | (8) |
为了完成主要定理的证明, 需要如下几个引理.
引理1.1[15] 设
(1)
(2)
引理1.2[6, 8] 设
$ \left\| {\nabla f} \right\|\left\langle {\varepsilon, \quad \Delta f} \right\rangle-\varepsilon, f(x) < \inf f + \varepsilon . $ |
定理0.1的证明 选取平均曲率向量
$ \text{tr}H_{\alpha}=\sum\limits_{i}h_{ii}^{\alpha}=0(\alpha\neq n+p), $ | (9) |
及
$ \text{tr}H_{n+p}=\sum\limits_{i}h_{ii}^{n+p}=nH, $ | (10) |
又因
$ h_{ij}^{n+p}=H\delta_{ij}. $ |
下面将估计式(8)中的各项
由文献[16]知, 若
$ \sum\limits_{\alpha, i, j, k}h_{ij}^{\alpha}h_{kkij}^{\alpha} =\sum\limits_{i, j}h_{ij}^{n+p}(nH)_{ij}=nH\Delta H=0. $ | (11) |
注意到
$ \sum\limits_{\alpha, \beta}[\text{tr}(H_{\alpha}^{2}H_{\beta}^{2}) -\text{tr}(H_{\alpha}H_{\beta})^{2}]\geqslant0, $ | (12) |
且
$ -\sum\limits_{\alpha, \beta}[\text{tr}(H_{\alpha}^{2}H_{\beta})] (\text{tr}H_{\beta})=-nH^{2}S. $ | (13) |
因
$ \text{tr}(H_{\alpha}H_{\beta})=\text{tr}(H_{\alpha}^{2})\delta_{\alpha\beta}, $ |
故
$ \sum\limits_{\alpha, \beta}[\text{tr}(H_{\alpha}H_{\beta})]^{2}= \sum\limits_{\alpha}[\text{tr}(H_{\alpha}^{2})]^{2}\geqslant \frac{1}{p}S^{2}\geqslant0. $ | (14) |
对固定的
$ \begin{align*} 4\sum\limits_{\beta}\sum\limits_{i, j, k}h_{ij}^{\alpha}h_{jk}^{\beta}K_{\alpha\beta k i}=&4\sum\limits_{i, k, \beta}\lambda_{i}^{\alpha}h_{ik}^{\beta}K_{\alpha\beta ki}\geqslant-4\sum\limits_{i\neq k\atop\beta(\neq\alpha)}\frac{2}{3}(c_{2}-c_{1})|\lambda_{i}^{\alpha}||h_{ik}^{\beta}|\\ \geqslant&-\frac{4}{3}(c_{2}-c_{1})(n-1)^{\frac{1}{2}}\sum\limits_{\beta\neq\alpha}\text{tr}H_{\beta}^{2}\\ &-\frac{4}{3}(c_{2}-c_{1})(n-1)^{\frac{1}{2}}(p-1)\text{tr}H_{\alpha}^{2}, \end{align*} $ |
进一步
$ 4\sum\limits_{\alpha, \beta}\sum\limits_{i, j, k}h_{ij}^{\alpha}h_{jk}^{\beta}K_{\alpha\beta ki}\geqslant-\frac{8}{3}(c_{2}-c_{1})(n-1)^{\frac{1}{2}}(p-1)S. $ | (15) |
同样由引理1.1得
$ \begin{align} \sum\limits_{\alpha, \beta}\sum\limits_{i, j, k}h_{ij}^{\alpha}h_{kk}^{\beta}K_{\alpha ij\beta}&=\sum\limits_{\alpha, \beta}\sum\limits_{i, j}h_{ij}^{\beta}K_{\alpha ij\beta}\Big(\sum\limits_{k}h_{kk}^{\beta}\Big)\notag\\ &\geqslant-\frac{2}{3}(c_{2}-c_{1})n|H|\sum\limits_{i, j, \alpha}|h_{ij}^{\alpha}|\notag\\ &\geqslant-\frac{2}{3}(c_{2}-c_{1})n^{2}|H|S^{\frac{1}{2}}. \end{align} $ | (16) |
另外, 由假设的条件
$ \sum\limits_{\alpha, \beta}\sum\limits_{i, j, k}K_{\alpha k\beta k}h_{ij}^{\alpha}h_{ij}^{\beta}=\sum\limits_{\alpha, \beta(\neq\alpha)}\sum\limits_{i, j, k}K_{\alpha k\beta k}h_{ij}^{\alpha}h_{ij}^{\beta}+\sum\limits_{\alpha, i, j, k}K_{\alpha k\alpha k}(h_{ij}^{\alpha})^{2}\geqslant nc_{1}S. $ | (17) |
同样由假设条件
$ \sum\limits_{i, j, k, m}h_{ij}^{\alpha}(h_{mk}^{\alpha}K_{mijk} +h_{mi}^{\alpha}K_{mkjk})\\ =\frac{1}{2}\sum\limits_{i, k}(\lambda_{i} ^{\alpha}-\lambda_{k}^{\alpha})^{2}K_{ikik}\geqslant\frac{1}{2} c_{1}\sum\limits_{i, k}(\lambda_{i}^{\alpha}-\lambda_{k}^{\alpha})^{2}\\ =nc_{1}\text{tr}(H_{\alpha})^{2}-c_{1}(\text{tr}H_{\alpha})^{2}. $ |
显然
$ 2\sum\limits_{\alpha}\sum\limits_{i, j, k, m}h_{ij}^{\alpha} (h_{mk}^{\alpha}K_{mijk}+h_{mi}^{\alpha}K_{mkjk})\geqslant2nc_{1} (S-nH^{2})\geqslant0. $ | (18) |
从而将式(11)—(18)代入式(8)得
$ \frac{1}{2}\Delta S\geqslant-\frac{2}{3}(c_{2}-c_{1})n^{2}|H|S^{\frac{1}{2}}-\\ \frac{8} {3}(c_{2}-c_{1})(n-1)^{\frac{1}{2}}(p-1)S-nH^{2}S+nc_{1}S. $ | (19) |
由定理假设的条件
$ \begin{align*}\text{Ric}(e_i)&=\sum\limits_{k}K_{ikik}+\sum\limits_{\alpha, k}h_{ik}^{\alpha}h_{ki}^{\alpha}-\sum\limits_{\alpha, k}h_{ii}^{\alpha}h_{kk}^{\alpha}\\ &=\sum\limits_{k}K_{ikik}+\sum\limits_{\alpha, k}(h_{ik}^{\alpha})^{2}-h_{ii}^{n+p}\sum\limits_{k}h_{kk}^{n+p}\\ &\geqslant(n-1)c_{1}-nH^{2}, \end{align*} $ |
即
设
$ \nabla f=-\frac{1}{2}f^{3}\nabla S $ | (20) |
及
$ \Delta f=-\frac{1}{2}f^{3}\Delta S+\frac{3}{4}f^{5}|\nabla S|^{2}. $ | (21) |
因
$ \frac{1}{4}f^{6}|\nabla S|^{2} < \varepsilon, \;\;\;\Delta f>-\varepsilon, \;\;\;f(x) < \inf f+\varepsilon. $ | (22) |
由式(21)、(22)得
$ \frac{1}{2}f^{4}\Delta S\leqslant\varepsilon(\inf f+\varepsilon)+3\varepsilon. $ | (23) |
由此将式(19)代入式(23)得
$ \frac{1}{(S+\alpha)^{2}}\\ \Big(-\frac{2}{3}(c_{2}-c_{1})n^{2}|H|S^{\frac{1}{2}} -\frac{8}{3}(c_{2}-c_{1})(n-1)^{\frac{1}{2}}(p-1)S-nH^{2}S+nc_{1}S\Big)\notag\\ \leqslant\varepsilon(\inf f+\varepsilon)+3\varepsilon. $ | (24) |
对任意的序列
定理0.2的证明 基于定理0.1对
$ \sum\limits_{\alpha, \beta}\sum\limits_{i, j, k}h_{ij}^{\alpha}h_{kk}^{\beta}K_{\alpha ij\beta}\geqslant-\frac{2}{3}(c_{2}-c_{1})n^{2}p^{\frac{1}{2}}|H|S^{\frac{1}{2}}\geqslant-\frac{2}{3}(c_{2}-c_{1})n^{\frac{3}{2}}p^{\frac{1}{2}}S. $ | (25) |
从而由式(8)、(14)、(19)及(25)得
$ \frac{1}{2}\Delta S\geqslant\\ S\Big(-\frac{2}{3}(c_{2}-c_{1})n^{\frac{3}{2}}p^{\frac{1}{2}}-\frac{8}{3} (c_{2}-c_{1})(n-1)^{\frac{1}{2}}(p-1)-nH^{2}+nc_{1}+\frac{1}{p}S\Big). $ |
若
$ \frac{1}{2}\Delta S\geqslant0. $ |
由于
[1] |
CHENG S Y, YAU S T. Maximal space-like hypersurfaces in the Lorentz-Minkowsi spaces[J]. Ann of Math, 1976, 104(3): 407-419. |
[2] |
GODDARD A J. Some remarks on the existence of space-like hypersurfaces of constant mean curvature[J]. Math Proc Cambridge, 1977, 82(3): 489-495. DOI:10.1017/S0305004100054153 |
[3] |
BRIAN S. Submanifolds of constant mean curvature[J]. Math Ann, 1973, 205(4): 265-280. DOI:10.1007/BF01362697 |
[4] |
SHU S C. Space-like submanifolds with parallel normalized mean curvature vector field in de sitter space[J]. J Math Phys Anal Geo, 2011, 7(4): 352-369. |
[5] |
邱望华, 侯中华. 伪黎曼乘积空间中具有平行平均曲率向量的曲面[J]. 数学物理学报, 2016, 36A(6): 1027-1039. DOI:10.3969/j.issn.1003-3998.2016.06.002 |
[6] |
OMORI H. Isometric immersions of Riemannian manifolds[J]. J Math Soc Japan, 1967, 19: 205-214. DOI:10.2969/jmsj/01920205 |
[7] |
CHENG Q M. Submanifolds with constant scalar curvature[J]. Proc Roy Soc Edinb A, 2002, 132: 1163-1183. |
[8] |
刘建成, 王凤. 局部对称伪黎曼流形中的极大类空子流形[J]. 华东师范大学学报(自然科学版), 2016(6): 199-126. |
[9] |
ARAÚJO J G, DE LIMA H F, DOS SANTOS F R, et al. Submanifolds with constant scalar curvature in a space form[J]. J Math Anal Appl, 2017, 447(1): 488-498. DOI:10.1016/j.jmaa.2016.10.033 |
[10] |
胡有婧, 纪永强. 常曲率空间中具有平行平均曲率向量的伪脐子流形[J]. 宁夏大学学报(自然科学版), 2003, 24(3): 259-261. DOI:10.3969/j.issn.0253-2328.2003.03.020 |
[11] |
尹松庭. 局部对称伪黎曼流形中的类空子流形[J]. 铜陵学院学报, 2010, 9(5): 78-79. DOI:10.3969/j.issn.1672-0547.2010.05.027 |
[12] |
陈颖, 董婷. 局部对称伪黎曼流形中的极大类空子流形[J]. 浙江大学学报(理学版), 2003, 30(2): 128-132. DOI:10.3321/j.issn:1008-9497.2003.02.003 |
[13] |
戴国元.局部对称伪黎曼流形中的子流形[D].南昌: 江西师范大学, 2004: 1-17. http://www.cnki.com.cn/Article/CJFDTotal-SXYJ601.014.htm
|
[14] |
魏琳. 局部对称伪黎曼流形中的伪脐类空子流形[J]. 甘肃联合大学学报(自然科学版), 2008, 22(1): 16-18. DOI:10.3969/j.issn.1672-691X.2008.01.006 |
[15] |
ISHIHARA T. Maximal spacelike submanifolds of a pseudo-Riemannian space of constant curvature[J]. Michigan Math J, 1988, 35(3): 345-352. DOI:10.1307/mmj/1029003815 |
[16] |
纪永强. 子流形几何[M]. 北京: 科学出版社, 2004.
|