文章快速检索     高级检索
  华东师范大学学报(自然科学版)  2019 Issue (3): 13-23  DOI: 10.3969/j.issn.1000-5641.2019.03.003
0

引用本文  

汪璇, 赵涛, 张玉宝. 衰退记忆型经典反应扩散方程在非线性边界条件下解的渐近性[J]. 华东师范大学学报(自然科学版), 2019, (3): 13-23. DOI: 10.3969/j.issn.1000-5641.2019.03.003.
WANG Xuan, ZHAO Tao, ZHANG Yu-bao. Asymptotic behavior of solutions for the classical reaction-diffusion equation with nonlinear boundary conditions and fading memory[J]. Journal of East China Normal University (Natural Science), 2019, (3): 13-23. DOI: 10.3969/j.issn.1000-5641.2019.03.003.

基金项目

国家自然科学基金(11761062,11561064,11661071);西北师范大学青年教师科研能力提升计划(NWNU-LKQN-14-6)

作者简介

汪璇, 女, 博士, 教授, 研究方向为非线性微分方程和无穷维动力系统理论应用.E-mail:wangxuan@nwnu.edu.cn

文章历史

收稿日期:2018-04-02
衰退记忆型经典反应扩散方程在非线性边界条件下解的渐近性
汪璇 , 赵涛 , 张玉宝     
西北师范大学 数学与统计学院, 兰州 730070
摘要:本文研究了记忆型经典反应扩散方程解的长时间动力学行为.当内部非线性项和边界非线性项均以超临界指数增长并满足一定的平衡条件时,运用抽象函数理论和半群理论,证明了该方程的全局吸引子在${L^2}\left( \Omega \right) \times L_\mu ^2\left( {{\mathbb{R}^ + };{H^1}\left( \Omega \right)} \right)$中的存在性,此结果改进和推广了一些已有的结果.
关键词经典反应扩散方程    非线性边界    衰退记忆    任意阶多项式增长    
Asymptotic behavior of solutions for the classical reaction-diffusion equation with nonlinear boundary conditions and fading memory
WANG Xuan , ZHAO Tao , ZHANG Yu-bao     
College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, China
Abstract: In this paper, we study the asymptotic behavior of solutions for the classical reaction-diffusion equation with memory. Through the use of abstract function theory and semigroup theory, the existence of a global attractor in ${L^2}\left( \Omega \right) \times L_\mu ^2\left( {{\mathbb{R}^ + };{H^1}\left( \Omega \right)} \right)$ is proven when the internal nonlinearity and boundary nonlinearity adhere to polynomial growth of arbitrary order as well as the balance condition. This result extends and improves some known results.
Keywords: classical reaction-diffusion equation    nonlinear boundary    fading memory    polynomial growth of arbitrary order    
0 引言

在非线性边界条件下, 我们讨论了如下记忆型经典反应扩散方程解的渐近性态.

$ \left\{ \begin{array}{l} {u_t} - \Delta u - \int_0^\infty {k(s)\Delta u(t - s){\rm{d}}s + f(u) = h(x)}, &(x, t) \in \Omega \times {\mathbb{R}^ + }, \\ \frac{{\partial u}}{{\partial \gamma }} + {g_1}(u) = 0, &(x, t) \in \Gamma \times {\mathbb{R}^ + }, \\ u(x, 0) = {u_0}(x), &x \in \Omega, \end{array} \right. $ (1)

其中, $\Omega$$\mathbb{R}^{3}$上带有光滑边界$\Gamma$的有界域, 且外力项$h(x)\in L^{2}(\Omega)$.

通过$u(\cdot)$和记忆核函数$k(\cdot)$的线性卷积项, 体现出衰退记忆在能量耗散中的作用, 使得系统的能量耗散不仅受到现时外力的影响, 同时还受到历史外力的影响, 并且伴随着时间的推移历史外力的影响会越来越小.因此, 设记忆核函数$k(\cdot)\in C^{2}(\mathbb{R^{+}}), k(s)\geqslant 0, k'(s)\leqslant 0, k(\infty)=0, \forall s\in \mathbb{R^{+}}.$

如同文献[1], 定义变量

$ \eta^{t}(x, s)=\int\nolimits^ s_ 0 u(x, t-r)\text{d}r, s\geqslant 0, $

$ \partial_t\eta^t(x, s)=u(x, t)-\partial_s\eta^t(x, s), s\geqslant 0. $ (2)

$\mu (s)=-k'(s), \mu\in C^ 1 (\mathbb{R^{+}})\cap L^1(\mathbb{R^{+}})$.显然, $\int\nolimits_0^\infty \mu(s)\text{d}s=k_0$, 且$\mu(\cdot)$满足

$ \mu (s)\geqslant 0, \mu'(s)\leqslant 0, \forall s\in \mathbb{R}^{+}, $ (3)
$ \mu'(s)+\delta\mu(s)\leqslant 0, \forall s\geqslant 0, $ (4)

其中$\delta$为正常数.则问题(1)可转化为

$ \displaystyle u_{t}-\Delta{u}-\int\nolimits^{\infty}_{0}\mu(s)\Delta\eta ^ t(s)\text{d}s+f(u)=h(x), $ (5)

相应初值条件为

$ \left\{\!\!\begin{array}{ll} u(x, 0)= u_{0}(x), & x\in\Omega, \\ \eta^{0}(x, s)=\int\nolimits^{s}_{0}u_{0}(x, -r)\text{d}r, & (x, s)\in\Omega\times\mathbb{R}^{+}, \end{array} \right. $ (6)

相应边值条件为

$ \left\{\!\!\begin{array}{ll} \dfrac{\partial u}{\partial \gamma}+g_{1}(u)=0, & (x, t) \in \Gamma\times\mathbb{R}^{+}, \\[2mm] \dfrac{\partial\eta^{t}}{\partial \gamma}+g_{2}(u)=0, & (x, t) \in \Gamma\times\mathbb{R}^{+}, \end{array} \right. $ (7)

其中, $u(\cdot)$满足:存在正常数$R_0$$\varrho=\min\{\frac{\delta}{2}, \frac{\lambda_{1}}{2}\}$, 使得

$ \int\nolimits^{\infty}_{0}{\rm e}^{-\varrho s}\|\nabla u(-s)\|^{2}\text{d}s\leqslant R_0, $

此处$\lambda_{1}$$-\Delta $的第一特征根.

问题(5)—(7)所包含的非线性项依据作用域可分为两类:内部非线性项和边界非线性项.设内部非线性项$f$$C^{1}$函数, 且满足:存在正常数$l$, 使得

$ f^\prime(s)\geqslant -l, \forall s\in {\mathbb R}, $ (8)

$ \lim\limits_{|s|\rightarrow \infty}\frac{f(s)s}{|s|^{p+1}}=C_{f}>0, $ (9)

其中$p$为大于$1$的正常数.同时, 设边界非线性项$g_1, g_2$$C^{1}$函数, 且满足:存在正常数$m_1$$m_2$, 使得

$ g_1^\prime(s)\geqslant -m_1, g_2^\prime(s)\geqslant -m_2, \text{及}\int\nolimits_\Gamma |g_2(s(x))|^2\text{d}x < \infty, $ (10)

$ \lim\limits_{|s|\rightarrow \infty}\frac{g_{1}(s)s}{|s|^{q+1}}=C_{g_{1}} < 0, $ (11)
$ \lim\limits_{|s|\rightarrow \infty}\frac{g_{2}(s)s}{|s|^{r+1}}=C_{g_{2}}>0, $ (12)

其中$q, r$均为大于等于$1$的正常数.

进一步, 为了保证问题(5)-(7)对应的动力系统为能量耗散系统, 假设内部非线性项和边界非线性项满足如下任一平衡条件$(\mathcal B_{1})$:

ⅰ) $p+1>\max\{2q, 2r\}$;

ⅱ)当$p+1=2q>2r$时, $C_{f}>\mathcal{R}^{2}C^{2}_{g_{1}}(q+1)^{2}$;

ⅲ)当$p+1=2r>2q$时, $C_{f}>\mathcal{R}^{2}k_0^2C^{2}_{g_{1}}(r+1)^{2}$;

ⅳ)当$p+1=2q=2r>2$时, $C_{f}>\mathcal{R}^{2}(q+1)^{2}(C^{2}_{g_{1}}+k^{2}_{0}C^{2}_{g_{2}})$;

ⅴ)当$p+1=2q=2r=2$时, $C_{f}+k_0\frac{|\Gamma|}{|\Omega|}C_{g_2}>\mathcal{R}^{2}(q+1)^{2}(C^{2}_{g_{1}}+k^{2}_{0}C^{2}_{g_{2}})-\frac{|\Gamma|}{|\Omega|}C_{g_1}$.

其中, $\mathcal{R}=\frac{|\Gamma|}{|\Omega|}C_{0}(\Omega, 1)$($C_{0}(\Omega, 1)$为引理1.2中的正常数), $k_{0}=k(0)$.

近年来, 关于经典反应扩散方程的渐近性态已引起了许多学者的关注和兴趣.在Dirichlet边界条件下, 文献[2-4]研究了记忆型经典反应扩散方程解的渐近性.当非线性项次临界增长时, Giorgi和Pata在文献[2]中得到了有界吸收集在空间$L^{2}\times L^{2}_{\mu}(\mathbb{R}; H^{1}_{0})$$H^{1}_{0}\times L^{2}_{\mu}(\mathbb{R}^{+}; H^{2}\cap H^{1}_{0})$的存在性.当非线性项超临界增长时, Chepyzhov和Miranville在文献[3]借助轨道吸引子在空间$L^{2}(\Omega)$上获得了全局吸引子的存在性, 汪璇等在文献[4]中运用收缩函数方法和半群理论直接证明了全局吸引子在$L^{2}\times L^{2}_{\mu}(\mathbb{R}^{+}; H^{1}_{0})$中的存在性.在非线性边界条件下, 文献[5-8]讨论了解的适定性和渐近性行为.尤其在文献[6-7]中, 当内部非线性项和边界非线性项超临界增长且满足一定的平衡条件时, 杨璐等分别得到了自治系统和非自治系统解的的渐近正则性和吸引子的存在性.

据我们所知, 因为衰退记忆项在非线性边界下能量估计存在困难, 记忆型反应扩散方程在非线性边界下解的动力学行为还很少有人研究, 因而引发了我们的研究兴趣.借助文献[6-8]的思想和观点, 我们在上述结果基础上继续讨论和研究了记忆型模型对应动力系统的非线性动力学行为.同时, 我们发现研究工作的重心和难点依然是解半群的紧性验证.由于内部非线性项和边界非线性项均以超临界指数增长, 在边界上紧嵌入定理失效以及衰退记忆项所在的记忆空间缺乏紧性, 使得紧性验证面临许多实质性困难.最终我们运用收缩函数方法和半群理论成功地攻克了上述实质性研究障碍, 证明了全局吸引子在空间$L^{2}(\Omega)\times L_\mu^2(\mathbb R^+; H^1(\Omega))$中的存在性.

本文的结构如下:在第1节, 介绍所研究问题涉及的预备知识, 包括空间的定义和抽象结果; 在第2节, 证明了全局吸引子在空间$L^{2}(\Omega)\times L_\mu^2(\mathbb R^+; H^1(\Omega))$中的存在性.

1 预备知识

如同文献[9], 设$A=-\Delta$且定义域$D(A)=H^{2}(\Omega)$.考虑Hilbert空间族$D(A^{\frac{s}{2}}), s\in \mathbb{R}$, 且按如下定义赋予相应的内积与范数.

$ \langle\cdot, \cdot\rangle_{D(A^{\frac{s}{2}})}= \langle A^{\frac{s}{2}}\cdot, A^{\frac{s}{2}}\cdot \rangle, \|\cdot\|_{D(A^{\frac{s}{2}})}=\|A^{\frac{s}{2}}\cdot\|, $

这里$\langle\cdot, \cdot\rangle$$\|\cdot\|$$L^{2}(\Omega)$的内积与范数.

对于$0\leqslant s\leqslant3$, 记

$ \mathcal{H}_{s}=D(A^{\frac{s}{2}}), \|\cdot\|_{\mathcal{H}_{s}}=\|\cdot\|_{D(A^{\frac{s}{2}})}, $

$\mathcal{H}_{0}=L^{2}(\Omega), \mathcal{H}_{1}=H^{1}(\Omega), \mathcal{H}_{2}=H^{2}(\Omega).$$0\leqslant r\leqslant3$时, 设$L^{2}_{\mu}(\mathbb{R}^{+}; \mathcal{H}_{r})$为定义于$\mathbb{R}^{+}$上取值于$\mathcal{H}_{r}$的Hilbert空间族, $\varphi:\mathbb{R}^{+}\rightarrow\mathcal{H}_{r}$, 并赋予相应内积与范数如下.

$ \begin{align*} \langle\varphi_{1}, \varphi_{2}\rangle_{\mu, \mathcal{H}_{r}}&=\int\nolimits^{\infty}_{0}\mu(s)\langle\varphi_{1}(s), \varphi_{2}(s)\rangle_{\mathcal{H}_{r}}\text{d}s, \\ \|\varphi\|_{\mu, \mathcal{H}_{r}}^2&=\int\nolimits^{\infty}_{0}\mu(s)\|\varphi\|^{2}_{\mathcal{H}_{r}}\text{d}s. \end{align*} $

定义如下Hilbert空间族

$ \mathcal E_r=\mathcal H_{r-1}\times L_\mu ^2(\mathbb R^+; \mathcal H_r), $

并且赋予范数:

$ \| z\| _{\mathcal E_r}=\| (u, \eta^t )\| _{\mathcal E_r} =\Big(\frac{1}{2}(\| u\|_{\mathcal H_{r-1}} ^2+\| \eta ^t\| _{\mu , \mathcal H_r}^2)\Big)^{\frac{1}{2}}. $

为了便于估计, 我们还需要以下抽象结果.

引理1.1[10]   对于给定的$T>0$, 记$I=[0, T]$.设记忆核函数满足式(3)—(4), 那么对于任意的$\eta^t\in C(I; L_\mu^2(\mathbb R^+; \mathcal H_r))$, $0 < r < 3$, 存在常数$\delta>0$, 使得

$ \langle \eta^t, \eta_s^t\rangle_{\mu, \mathcal H_r}\geqslant \frac{\delta}{2}\|\eta^t\|_{\mu, \mathcal H_r}^2. $

引理1.2[8]   存在常数$C_{0}(\Omega, 1)>0$, 使得对于每一个$\varphi\in W^{1, 1}(\Omega)$, 有

$ \Big\|\varphi-\frac{1}{|\Gamma|}\int\nolimits_{\Gamma}\varphi \text{d}x\Big\|_{L^{1}(\Omega)}\leqslant C_{0}(\Omega, 1)\|\nabla\varphi\|_{L^{1}(\Omega)}. $

以下预备结果出自Sun, Cao和Duan[11-12], Robinson[13]和Temam[14], 用于验证解半群的渐近紧性.

定义1.1[11-12]  设$X$为Banach空间, $B$$X$中的有界集.定义于$X\times X$上的函数$\varphi(\cdot, \cdot)$称为$B \times B$上的收缩函数, 如果对于任意序列$\{x_n\}_{n=1}^\infty\subset B$, 存在子列$\{x_{n_k}\}_{k=1}^\infty\subset \{x_n\}_{n=1}^\infty$, 使得

$ \lim\limits_{k\to \infty}\lim\limits_{l\to \infty}\phi(x_{n_k}, x_{n_l})=0. $

$\mathfrak{C}(B)$为定义于$B \times B$上的收缩函数的集合.

引理1.3[11-14]  设$\{S(t)\}_{t\geqslant 0}$为Banach空间$(X, \|\cdot\|)$上的半群, 并拥有有界吸收集$B_0$.进一步, 如果对于任意的$\varepsilon >0$, 存在$T=T(B_0, \varepsilon)$$\phi_{T}(\cdot, \cdot) \in \mathfrak{C}(B_0)$, 使得

$ \|S(T)x-S(T)y\|\leqslant \varepsilon + \phi_{T}(x, y), \quad \forall x, y\in B_0, $

其中$\phi_{T}$依赖于$T$.则$\{S(t)\}_{t\geqslant 0}$$X$中渐近紧, 即, 对于任意有界序列$\{y_n\}_{n=1}^{\infty}\subset X$$\{t_n\}$, 当$n\to \infty$, $t_n \to \infty$时, 有$\{S(t_n)y_n\}_{n=1}^{\infty}$$X$中相对紧.

2 主要结果 2.1 解的存在唯一性

首先, 关于问题(5)—(7)的解做出如下定义.

定义2.1   对于给定的$T\!>\!0$, 记$I\!=\![0, T]$.设$g\!\in\! L^2(\Omega)$$z_0\in\mathcal E_1$, 二元组$z=(u, \eta^t)$满足

$ u\in (L^2(I; \mathcal H_1)\cap L^{p+1}(I; L^{p+1}(\Omega))\times L^{q+1}(I;L^{q+1}(\Gamma))) \times L^{r+1}(I;L^{r+1}(\Gamma)), \\ \eta^t\in L^2(I; L_\mu^2(\mathbb R^+; \mathcal H_1));\\ \eta_t^t+\eta_s^t\in L^\infty(I; L_\mu^2(\mathbb R^+; \mathcal H_0))\cap L^2(I; L_\mu^2(\mathbb R^+; \mathcal H_1)). $

$z$为问题(5)—(7)于时间区间$I$上的解, 如果

$ \langle u_t, \omega\rangle+\langle u, \omega\rangle_{\mathcal H_1}+\langle\eta^t, \omega\rangle_{\mu, \mathcal H_1}+\langle f(u), \omega\rangle=\langle g, \omega\rangle, \\ \langle \eta_t^t+\eta_s^t, \varphi\rangle_{\mu, \mathcal H_1}=\langle u, \varphi\rangle_{\mu, \mathcal H_1}, $

对于所有的$\omega\in \mathcal H_1$, $\varphi\in L_\mu^2(\mathbb R^+; \mathcal H_1)$成立, 对$t\in I$几乎处处成立.

运用文献[10]、[14]中的Galerkin逼近方法, 可以得到问题(5)—(7)的解$z(t)$$\mathcal E_1$中的存在唯一性.

定理2.1   设非线性项$f, g_{1}, g_{2}$满足式(9)、(11)、(12)及平衡条件$(\mathcal B_{1})$, 记忆核函数$\mu(\cdot)$满足式(3)—(4), 且设$h\in L^{2}(\Omega)$, 那么对任意给定的初值$z_{0}\in \mathcal E_1$, 问题(5)—(7)在$\mathcal E_1$中存在唯一解$z=z(t)$, 且满足

$ u\in (L^{2}(I;\mathcal{H}_{1})\cap L^{p+1}(I;L^{p+1}(\Omega)) \times L^{q+1}(I;L^{q+1}(\Gamma)))\times L^{r+1}(I;L^{r+1}(\Gamma)), \\ z\in L^{2}(I;\mathcal{E}_{1})\cap L^{\infty}([0, \infty];\mathcal{E}_{1}). $

进一步, 映射$ z_{0}\mapsto z(t)$$\mathcal{E}_{1}$中为强弱连续的.

根据定理2.1, 可以定义问题(5)—(7)在空间$\mathcal{E}_{1}$中的解半群$\{S(t)\}_{t\geqslant0}$, 其中

$ S(t):\mathcal{E}_{1}\rightarrow \mathcal{E}_{1}, \\ z_{0}=(u_0, \eta^0)\mapsto (u(t), \eta^t)=S(t)z_{0}. $
2.2 有界吸收集的存在性

首先, 关于问题(5)—(7)的解在空间$\mathcal{E}_{1}$中作先验估计.

引理2.1  设$z(t)$为问题(5)—(7)在空间$\mathcal{E}_{1}$中的解, 初值$z_0\in B$, $B$$\mathcal{E}_{1}$中的有界子集.若$h\in L^{2}(\Omega)$, 非线性项$f, g_{1}, g_{2}$满足式(9)、(11)、(12)及平衡条件$(\mathcal B_{1})$, 且条件(3)—(4)成立, 则对任意有界集$B \subset \mathcal{E}_{1}$, 存在$t_{0}=t_{0}(\|B\|)$, 使得

$ \|z(t)\|_{\mathcal E_1}^{2}\leqslant\rho_{0}^{2}, t \geqslant t_{0}. $

证明  用$u$与方程(5)在$L^2(\Omega)$中作内积, 可得

$ \frac{1}{2}\cdot\frac{\text{d}}{\text{d}t}\|u\|^{2}+\|\nabla u\|^{2}+\int\nolimits_{\Gamma}g_1(u)u\text{d}x\\ -\int\nolimits^{\infty}_{0}\mu(s)\langle\Delta\eta^{t}(s), u(t)\rangle\text{d}s+\int\nolimits_{\Omega} f(u)u\text{d}x \\ =\int\nolimits_\Omega h(x)u\text{d}x. $ (13)

首先, 根据引理1.1易知

$ -\int\nolimits^{\infty}_{0}\mu(s)\langle\Delta\eta^{t}(s), u(t)\rangle\text{d}s\\ =\int\nolimits^{\infty}_{0}\mu(s)\langle\nabla\eta^{t}(s), \nabla\eta^{t}_{t}(x, s)+\nabla\eta^{t}_{s}(x, s)\rangle\text{d}s- \int\nolimits^{\infty}_{0}\mu(s)\Big\langle\frac{\partial\eta^{t}(s)} {\partial \gamma}, u\Big\rangle_{\Gamma}\text{d}s \\ \geqslant\frac{1}{2}\cdot\frac{\text{d}}{\text{d}t}\|\eta^{t}\|^{2}_{\mu, \mathcal{H}_{1}}+\frac{\delta}{2}\|\eta^{t}\|^{2}_{\mu, \mathcal{H}_{1}}+ \int\nolimits^{\infty}_{0}\mu(s)\langle g_{2}(u), u\rangle_{\Gamma}\text{d}s. $

并且, 根据引理1.2可得

$ \begin{align} \int\nolimits^{\infty}_{0}&\mu(s)\langle g_{2}(u), u\rangle_{\Gamma}\text{d}s\\ =&k_{0}\Big(-\frac{|\Gamma|}{|\Omega|}\int\nolimits_{\Omega}\Big(g_{2}(u)u-\frac{1}{|\Gamma|}\int\nolimits_{\Gamma}g_{2}(u)u\text{d}x\Big)\text{d}x +\frac{|\Gamma|}{|\Omega|}\int\nolimits_{\Omega}g_{2}(u)u\text{d}x\Big)\\ \geqslant& -\frac{1}{4}\|\nabla u\|^{2}-\mathcal{R}^{2}k^{2}_{0}\|g'_{2}(u)u+g_{2}(u)\|^{2}+k_{0} \frac{|\Gamma|}{|\Omega|}\int\nolimits_{\Omega}g_{2}(u)u\text{d}x, \end{align} $

其中, $\mathcal{R}=\frac{|\Gamma|}{|\Omega|}C_0(\Omega, 1)$.其次, 易知

$ \begin{align} \int\nolimits_{\Gamma}g_{1}&(u)u\text{d}x\\ =&\frac{|\Gamma|}{|\Omega|}\int\nolimits_{\Omega}g_{1}(u)u\text{d}x-\frac{|\Gamma|}{|\Omega|}\int\nolimits_{\Omega} \Big(g_{1}(u)u- \frac{1}{|\Gamma|}\int\nolimits_{\Gamma}g_{1}(u)u\text{d}x\Big)\text{d}x\\ \geqslant&-\frac{1}{4}\|\nabla u\|^{2}+\int\nolimits_{\Omega}\Big(\frac{|\Gamma|}{|\Omega|}g_{1}(u)u- \mathcal{R}^{2}(g'_{1}(u)u+g_{1}(u))^{2}\Big)\text{d}x. \end{align} $

$ H_{1}(u)=f(u)u+\frac{|\Gamma|}{|\Omega|}g_{1}(u)u+k_{0}\frac{|\Gamma|}{|\Omega|}g_{2}(u)u-\\ \mathcal{R}^{2}(g'_{1}(u)u+g_{1}(u))^{2}- \mathcal{R}^{2}k^{2}_{0}(g'_{2}(u)u+g_{2}(u))^{2}. $

根据非线性项平衡条件$(\mathcal B_{1})$可知

$ H_{1}(u)\geqslant C_{1}|u|^{p+1}-C_{2}. $

另外, 根据Cauchy不等式, 易得

$ \langle h(x), u\rangle\leqslant\frac{\lambda_1}{4}\|u\|^{2}+\frac{\|h\|^{2}}{\lambda_1}. $

将以上估计代入式(13), 可得

$ \begin{align} \frac{1}{2}&\cdot\frac{\text{d}}{\text{d}t}(\| u\|^2+\|\eta^t\|_{\mu, \mathcal H_1}^2)+\frac{1}{4}\| \nabla u\|^2+\frac{\delta}{2}\|\eta^t\|_{\mu, \mathcal H_1}^2+C_1\int\nolimits_\Omega{|u|^{p+1}\text{d}x} \\ &\leqslant \frac{1}{\lambda_1}\|h\|^2+C_2|\Omega|. \end{align} $ (14)

应用Poincaré不等式, 可得

$ \frac{1}{2}\cdot\frac{\text{d}}{\text{d}t}(\|u\|^{2}+\|\eta^{t}\|^{2}_{\mu, \mathcal{H}_{1}})+\frac{\lambda_{1}}{4}\|u\|^{2}+ \frac{\delta}{2}\|\eta^{t}\|^{2}_{\mu, \mathcal{H}_{1}} \leqslant\frac{\|h\|^{2}}{\lambda_1}+C_{3}, $

其中, $C_3=C_2|\Omega|$.

$\alpha=\min\{\frac{\lambda_{1}}{2}, \delta\}$, 有

$ \frac{\text{d}}{\text{d}t}(\|u\|^{2}+\|\eta^{t}\|^{2}_{\mu, \mathcal{H}_{1}})+\alpha(\|u\|^{2}+\|\eta^{t}\|^{2}_{\mu, \mathcal{H}_{1}}) \leqslant2\frac{\|h\|^{2}}{\lambda_1}+2C_{3}. $

应用Gronwall引理, 可得

$ \|u(t)\|^{2}+\|\eta^{t}\|^{2}_{\mu, \mathcal{H}_{1}}\leqslant (\|u(0)\|^{2}+\|\eta^{0}(s)\|^{2}_{\mu, \mathcal{H}_{1}}) {\rm e}^{-\alpha t}+\frac{2}{\alpha}\Big(\frac{\|h\|^{2}}{\lambda_1}+C_{3}\Big), $

$ \|z(t)\|_{\mathcal E_1}^{2}\leqslant(\|u(0)\|^{2}+\| \eta^{0}(s)\|^{2}_{\mu, \mathcal{H}_{1}}){\rm e}^{-\alpha t}+C. $

由于$z_0\in B$, 则存在常数$R_1>0$, 使得$\|z(0)\|_{\mathcal E_1}^{2}\leqslant R_1$.故当$t\geqslant t_{0}$时, 有

$ \|z(t)\|_{\mathcal E_1}\leqslant\rho_{0}. $ (15)

证毕.

根据引理2.1可得有界吸收集的存在性, 即

定理2.2(有界吸收集存在定理)  若引理2.1的假设成立, 则对于任意有界子集$B\subset \mathcal E_1$, 存在$t_{0}=t_{0}(\|B\|), $对于所有的$t\geqslant t_{0}$$z_{0}\in B, $

$ \|S(t)z_{0}\|\leqslant\rho_{0}. $
2.3 全局吸引子的存在性

为了证明全局吸引子在$\mathcal E_1$中的存在性, 需要证明以下预备结果.

引理2.2  设$z(t)$为问题(5)—(7)在空间$\mathcal E_1$中的解.如果$h\in L^2(\Omega)$, 式(3)—(4)成立且非线性项满足式(9)、(11)、(12)及平衡条件$(\mathcal B_{1})$, 那么存在常数$N_0>0$, 使得

$ \int\nolimits_t^{t+1}{\|\nabla u(s)\|^2\text{d}s}\leqslant N_0, t\geqslant 0. $ (16)

证明   对式(14)在$[t, t+1]$上积分, 并且利用式(15), 可得

$ \begin{align} \frac{1}{2}\int\nolimits_t^{t+1}&{\|\nabla u(s)\|^2\text{d}s}+\delta\int\nolimits_t^{t+1}{\| \eta^s\|_{\mu, \mathcal H_1}^2\text{d}s}+2C_1\int\nolimits_t^{t+1}\int\nolimits_\Omega|u|^{p+1}\text{d}x\text{d}s\\&\leqslant \frac{2\|h\|^2}{\lambda_1}+C, t\geqslant 0. \end{align} $

故式(16)成立, 证毕.

根据无穷维动力系统全局吸引子的存在性定理(见文献[14-15]), 类似于文献[16], 还需验证强弱连续半群$\{S(t)\}_{t \geqslant 0}$$\mathcal E_1$中的渐近紧性.

定理2.3  设$\{S(t)\}_{t\geqslant 0}$为问题(5)—(7)在能量空间$\mathcal E_1$中的解生成的解半群.如果非线性项满足条件(8)—(12)及平衡条件$(\mathcal B_{1})$, 外力项$h\in L^2(\Omega)$且式(3)—(4)成立, 那么$\{S(t)\}_{t\geqslant 0}$$\mathcal E_1$中渐近紧.

证明   设$z_1\!=\!(u_1, \eta_1^t)$$z_2\!=\!(u_2, \eta_2^t)$为问题(5)—(7)在能量空间$\mathcal E_1$中的两个解, 分别满足初值条件$z_{10}=(u_{10}, \eta_{1}^0)$$z_{20}=(u_{20}, \eta_{2}^0)$, 且初值$z_{10}$$z_{20}$均属于解半群$\{S(t)\}_{t\geqslant 0}$$\mathcal E_2$中的有界吸收集$B_0$.

$w=u_1-u_2$, $\xi^t=\eta_1^t-\eta_2^t$, $w(t)=\xi_t^t+\xi_s^t$.则由问题(5)—(7), 可得

$ w_{t}+Aw+\int\nolimits_0^\infty{\mu (s)A \xi ^t(s)\text{d}s}+f(u_1)-f(u_2)=0, $ (17)

相应边值条件为

$ \left\{\!\!\begin{array}{ll} \dfrac{\partial w}{\partial \gamma}+g_{1}(u_1)-g_1(u_2)=0, & (x, t) \in \Gamma\times\mathbb{R}^{+}, \\ \dfrac{\partial\xi^{t}}{\partial \gamma}+g_{2}(u_1)-g_2(u_2)=0, & (x, t) \in \Gamma\times\mathbb{R}^{+}. \end{array} \right. $ (18)

相应初值条件为

$ \left\{\!\!\begin{array}{ll} w(0)=u_{10}-u_{20}, \\ \xi^0=\eta_1^0-\eta_2^0. \end{array} \right. $ (19)

将式(17)与$w(t)$$L^2(\Omega)$作内积, 可得

$ \frac{1}{2}\cdot\frac{\text{d}}{\text{d}t}\| w\| ^2+\|\nabla w\|^2+\\ \int\nolimits_\Gamma (g_1(u_1)-g_1(u_2))w\text{d}x+\int\nolimits_0^\infty{\mu (s)\langle\nabla\xi ^t(s), \nabla w\rangle} \text{d}s\\[1mm] +\int\nolimits_0^\infty{\mu(s)\int\nolimits_\Gamma (g_2(u_1)-g_2(u_2))w\text{d}x}\text{d}s+\langle f(u_1)-f(u_2), w\rangle=0. $ (20)

定义如下泛函:

$ F(t)=\frac{1}{2}(\| w\|^2+\| \xi ^t\| _{\mu, \mathcal H_1}^2). $

$ \begin{align} \frac{\text{d}}{\text{d}t}F(t)=&\int\nolimits_\Omega { w(t) w_t(t)\text{d}x}+\int\nolimits_0^\infty {\mu (s)\langle\nabla \xi _t^t(s), \nabla \xi ^t(s)\rangle \text{d}s}\\ =&-\| \nabla w\|^2-\int\nolimits_\Gamma (g_1(u_1)-g_1(u_2))w\text{d}x-\frac{1}{2}\int\nolimits_0^\infty {\mu (s)\frac{\text{d}}{\text{d}s}| \nabla \xi ^t(s)| ^2\text{d}s}\\ &-\int\nolimits_0^\infty{\mu (s)\int\nolimits_\Gamma (g_2(u_1)-g_2(u_2))w\text{d}x}\text{d}s-\langle f(u_1)-f(u_2), w\rangle. \end{align} $

利用条件(8), 可得

$ -\langle f(u_1)-f(u_2), w\rangle \leqslant l\| w\|^2. $

利用条件(10), 可得

$ -\int\nolimits_\Gamma (g_1(u_1)-g_1(u_2))w\text{d}x \leqslant m_1 \int\nolimits_\Gamma |w|^2\text{d}x\\ =-m_1\frac{|\Gamma|}{|\Omega|}\int\nolimits_{\Omega} |w|^2\text{d}x+m_1\frac{|\Gamma|}{|\Omega|}\int\nolimits_{\Omega}\Big||w|^2- \frac{1}{|\Gamma|}\int\nolimits_{\Gamma}|w|^2\text{d}x\Big| \text{d}x\\ \leqslant\frac{1}{4}\|\nabla w\|^{2}-m_1\int\nolimits_{\Omega} \Big(\frac{|\Gamma|}{|\Omega|}|w|^2-4m_1\mathcal{R}^{2}|w|^2\Big)\text{d}x\\ \leqslant\frac{1}{4}\|\nabla w\|^{2}+\Big(4m_1^2\mathcal{R}^{2}+m_1\frac{|\Gamma|}{|\Omega|}\Big)\| w\|^2, $

并且

$ -\int\nolimits_0^\infty{\mu (s)\int\nolimits_\Gamma (g_2(u_1)-g_2(u_2))w\text{d}x}\text{d}s \leqslant m_2k_0 \int\nolimits_\Gamma |w|^2\text{d}x\\ =\frac{1}{4}\|\nabla w\|^{2}+\Big(4m_2^2k_0^2\mathcal{R}^{2}+m_2k_0\frac{|\Gamma|}{|\Omega|}\Big)\| w\|^2. $

根据引理1.1可知

$ -\frac{1}{2}\int\nolimits_0^\infty {\mu (s)\frac{\text{d}}{\text{d}s}| \nabla \xi ^t(s)| ^2\text{d}s} \leqslant -\frac{\delta}{2}\|\xi^t\|_{\mu, \mathcal H_1}^2, $

$ \frac{\text{d}}{\text{d}t}F(t)+C_\delta F(t)\leqslant C^*\| w(t)\|^2, $ (21)

其中, 常数$C_\delta=\min\{\delta, \lambda_1\}$, $C^*=2l+8m_1^2\mathcal{R}^{2}+8m_2^2k_0^2\mathcal{R}^{2}+2m_1\frac{|\Gamma|}{|\Omega|}+2m_2k_0\frac{|\Gamma|}{|\Omega|}$.

对于任意给定的$T>0$, 将式(21)乘以${\rm e}^{C_\delta t}$并且在$[0, T]$上积分, 有

$ F(T)\leqslant {\rm e}^{-C_\delta T} F(0)+C^*{\rm e}^{-C_\delta T}\int\nolimits_0^T{{\rm e}^{C_\delta s} \| w(s)\|^2\text{d}s}. $

对应于引理1.3, 设

$ \phi_T(z_1, z_2)=C^*{\rm e}^{-C_\delta T}\int\nolimits_0^T{{\rm e}^{C_\delta s} \|u_1(s)- u_2(s)\|^2\text{d}s}. $

下面将证明$\phi_T(\cdot, \cdot)$$B_0\times B_0$中的收缩函数, 其中$B_0$为解半群在$\mathcal E_1$中的有界吸收集.

根据定义1.1, 对于任意序列$\{z_{n}^{0}\}\subset B_0$, 仅需证明存在子列$\{z_{n_k}^{0}\}_{k=1}^\infty\subset\{z_n^{0}\}_{n=1}^\infty$, 使得

$ \lim\limits_{l\rightarrow\infty} \lim\limits_{m\rightarrow\infty}\int\nolimits_0^T{\|\nabla u_{n_l}(s)-\nabla u_{n_m}(s)\|^2\text{d}s}=0, $

其中, $u_{n_l}(t)=\Pi_1 S(t)z^{0}_{n_l}$, $\Pi_1: L^2(\Omega)\times L_{\mu}^2(\mathbb{R}^+; \mathcal{H}_1)\to L^2(\Omega)$为投影算子.

因此需证明$A:=\{u(t), t\in[0, T]: u(t)=\Pi_1 S(t)z_0, z_0\in B_0\}$$L^2([0, T]; L^2(\Omega))$中相对紧.

首先, 对式(14)在$[0, T]$上积分, 并且利用式(15), 可得

$ \begin{align} \frac{1}{2}&\int\nolimits_0^{T}{\|\nabla u(s)\|^2\text{d}s}+\delta\int\nolimits_0^{T}{\| \eta^s\|_{\mu, \mathcal H_1}^2\text{d}s}+2C_1\int\nolimits_0^{T}\int\nolimits_\Omega|u|^{p+1}\text{d}x\text{d}s\\&\leqslant \frac{2T\|h\|^2}{\lambda_1}+CT, t\geqslant 0. \end{align} $

$A$$L^2([0, T]; \mathcal H_1)$中有界.

其次, 利用方程(5), 有

$ u_t=\Delta u+\int\nolimits_0^\infty{\mu(s)\Delta \eta^t(s)\text{d}s}-f(u)+h(x). $

显然, $\Delta u\in L^2([0, T]; H^{-1})$.利用条件(10), $f(u)\in L^{\frac{p+1}{p}}([0, T]; L^{\frac{p+1}{p}}(\Omega))$, 并且由于$L^q(\Omega)\hookrightarrow H^{-\gamma}(\Omega)$, 故$f(u)\in L^q([0, T]; H^{-\gamma}(\Omega))$, 其中$q$$p+1$的对偶数, 且$p+1\geqslant 2$, $q>1$, $\gamma>1$.

最后, 对于任意的$v\in \mathcal H_1$, 有

$ \begin{align} \int\nolimits_0^\infty &{\mu(s)\langle\Delta \eta^t(s), v(t)\rangle \text{d}s}\\ \leqslant&\int\nolimits_0^\infty{\mu(s)\|\nabla \eta^t(s)\|\cdot\|\nabla v(t)\|\text{d}s}+k_0\int\nolimits_\Gamma g_2(u)v\text{d}x, \end{align} $

其中,

$ \begin{align} \int\nolimits_0^\infty&{\mu(s)\|\nabla \eta^t(s)\|\cdot\|\nabla v(t)\|\text{d}s} \\ \leqslant &\Big(\int\nolimits_0^\infty{\mu(s)\|\nabla \eta^t(s)\|^2\text{d}s}\Big)^{\frac{1}{2}} \cdot\Big(\int\nolimits_0^\infty{\mu(s)\|\nabla v(t)\|^2\text{d}s}\Big)^{\frac{1}{2}}\\ \leqslant&k_0^{1/2}\|\nabla v\| \Big(\int\nolimits_0^\infty{\mu(s)\|\nabla \eta^t(t)\|^2\text{d}s}\Big)^{\frac{1}{2}}. \end{align} $

并且, 利用式(12)及引理1.2可得

$ \begin{align} k_0\int\nolimits_\Gamma &g_2(u)v\text{d}x\\[2mm] \leqslant&k_0\Big(\int\nolimits_\Gamma |g_2(u)|^2 \text{d}x\Big)^{\frac{1}{2}}\cdot \Big(\int\nolimits_\Gamma |v|^2\text{d}x\Big)^{\frac{1}{2}}\\[2mm] \leqslant&k_{0}C\Big(\frac{|\Gamma|}{|\Omega|} \int\nolimits_{\Omega}\Big||v|^2-\frac{1}{|\Gamma|}\int \nolimits_{\Gamma}|v|^2\text{d}x\Big|\text{d}x +\frac{|\Gamma|}{|\Omega|}\int\nolimits_{\Omega}|v|^2\text{d}x\Big)^{\frac{1}{2}}\\[2mm] \leqslant &k_{0}C\Big(R\|\nabla v\|^2+\frac{|\Gamma|}{|\Omega|}\|v\|^2\Big)^{\frac{1}{2}}. \end{align} $

利用式(15), 易知$\int\nolimits_0^\infty{\mu(s)\Delta \eta^t(s){\rm d}s}\in L_\mu^{\infty}(\mathbb R^+; H^{-1})$, 因此$\partial_t A$$L^q([0, T]; H^{-\gamma})$中有界.显然, $A$$L^2([0, T]; L^2(\Omega))$中相对紧, 证毕.

根据引理1.2、定理2.2和定理2.3, 可以得到以下本文的主要结果.

定理2.4(全局吸引子存在定理)  如果定理2.3的假设成立, 则问题(5)—(7)对应的解半群$\{S(t)\}_{t \geqslant 0}$$\mathcal E_1$中拥有全局吸引子$\mathcal{A}$, 并以$\mathcal E_1$-范数吸引$\mathcal E_1$中的任意有界集.

参考文献
[1]
DAFERMOS C M. Asymptotic stability in viscoelasticity[J]. Archive Rational Mechanics & Analysis, 1970, 37(4): 297-308.
[2]
GIORGI C, PATA V. Asymptotic behavior of a nonlinear hyperbolic heat equation with memory[J]. Nonlinear Differential Equations and Applications NoDEA, 2001, 8(2): 157-171. DOI:10.1007/PL00001443
[3]
CHEPYZHOV V V, MIRANVILLE A. On trajectory and global attractors for semilinear heat equations with fading memory[J]. Indiana University Mathematics Journal, 2006, 55(1): 119-168. DOI:10.1512/iumj.2006.55.2597
[4]
汪璇, 朱宗伟, 马巧珍. 带衰退记忆的经典反应扩散方程的全局吸引子[J]. 数学年刊(中文版), 2014, 35(4): 423-434.
[5]
CARVALHO A N, OLIVA S M, PEREIRA A L, et al. Attractors for parabolic problems with nonlinear boundary conditions[J]. Journal of Mathematical Analysis and Applications, 1997, 207(1/2): 409-461.
[6]
YANG L, YANG M H. Attractors of the non-autonomous reaction-diffusion equation with nonlinear boundary condition[J]. Nonlinear Analysis:Real World Applications, 2010, 11(5): 3946-3954. DOI:10.1016/j.nonrwa.2010.03.002
[7]
YANG L. Asymptotic regularity and attractors of the reaction-diffusion equation with nonlinear boundary condition[J]. Nonlinear Analysis:Real World Applications, 2012, 13(3): 1069-1079. DOI:10.1016/j.nonrwa.2011.02.024
[8]
RODRÍGUEZ-BERNAL A, TAJDINE A. Nonlinear balance for reaction diffusion equations under nonlinear boundary conditions:Dissipativity and blow-up[J]. Journal of Differential Equations, 2001, 169(2): 332-372.
[9]
PATA V, SQUASSINA M. On the strongly damped wave equation[J]. Communications in Mathematical Physics, 2005, 253(3): 511-533.
[10]
PATA V, ZUCCHI A. Attractors for a damped hyperbolic equation with linear memory[J]. Advances in Mathematical Sciences and Applications, 2001, 11(2): 505-529.
[11]
SUN C Y, CAO D M, DUAN J Q. Non-autonomous wave dynamics with memory-asymptotic regularity and uniform attractor[J]. Discrete and continuous dynamical systems (Series B), 2008, 9: 743-761. DOI:10.3934/dcdsb
[12]
SUN C Y, CAO D M, DUAN J Q. Non-autonomous dynamics of wave equations with nonlinear damping and critical nonlinearity[J]. Nonlinearity, 2006, 19(11): 2645-2665. DOI:10.1088/0951-7715/19/11/008
[13]
ROBINSON J C. Infinite-Dimensional Dynamical Systems an Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors[M]. Cambridge: Cambridge University Press, 2001.
[14]
TEMAM R. Infinite Dimensional Dynamical System in Mechanics and Physics[M]. Berlin: SpringVerlag, 1997.
[15]
HALE J K. Asymptotic behavior of dissipative systems[M]. Providence, RI: American Mathematical Society, 1988.
[16]
张玉宝, 汪璇. 无阻尼弱耗散抽象发展方程的强全局吸引子[J]. 华东师范大学学报(自然科学版), 2017, 2: 8-19. DOI:10.3969/j.issn.1000-5641.2017.02.002