在非线性边界条件下, 我们讨论了如下记忆型经典反应扩散方程解的渐近性态.
$ \left\{ \begin{array}{l} {u_t} - \Delta u - \int_0^\infty {k(s)\Delta u(t - s){\rm{d}}s + f(u) = h(x)}, &(x, t) \in \Omega \times {\mathbb{R}^ + }, \\ \frac{{\partial u}}{{\partial \gamma }} + {g_1}(u) = 0, &(x, t) \in \Gamma \times {\mathbb{R}^ + }, \\ u(x, 0) = {u_0}(x), &x \in \Omega, \end{array} \right. $ | (1) |
其中,
通过
如同文献[1], 定义变量
$ \eta^{t}(x, s)=\int\nolimits^ s_ 0 u(x, t-r)\text{d}r, s\geqslant 0, $ |
则
$ \partial_t\eta^t(x, s)=u(x, t)-\partial_s\eta^t(x, s), s\geqslant 0. $ | (2) |
令
$ \mu (s)\geqslant 0, \mu'(s)\leqslant 0, \forall s\in \mathbb{R}^{+}, $ | (3) |
$ \mu'(s)+\delta\mu(s)\leqslant 0, \forall s\geqslant 0, $ | (4) |
其中
$ \displaystyle u_{t}-\Delta{u}-\int\nolimits^{\infty}_{0}\mu(s)\Delta\eta ^ t(s)\text{d}s+f(u)=h(x), $ | (5) |
相应初值条件为
$ \left\{\!\!\begin{array}{ll} u(x, 0)= u_{0}(x), & x\in\Omega, \\ \eta^{0}(x, s)=\int\nolimits^{s}_{0}u_{0}(x, -r)\text{d}r, & (x, s)\in\Omega\times\mathbb{R}^{+}, \end{array} \right. $ | (6) |
相应边值条件为
$ \left\{\!\!\begin{array}{ll} \dfrac{\partial u}{\partial \gamma}+g_{1}(u)=0, & (x, t) \in \Gamma\times\mathbb{R}^{+}, \\[2mm] \dfrac{\partial\eta^{t}}{\partial \gamma}+g_{2}(u)=0, & (x, t) \in \Gamma\times\mathbb{R}^{+}, \end{array} \right. $ | (7) |
其中,
$ \int\nolimits^{\infty}_{0}{\rm e}^{-\varrho s}\|\nabla u(-s)\|^{2}\text{d}s\leqslant R_0, $ |
此处
问题(5)—(7)所包含的非线性项依据作用域可分为两类:内部非线性项和边界非线性项.设内部非线性项
$ f^\prime(s)\geqslant -l, \forall s\in {\mathbb R}, $ | (8) |
且
$ \lim\limits_{|s|\rightarrow \infty}\frac{f(s)s}{|s|^{p+1}}=C_{f}>0, $ | (9) |
其中
$ g_1^\prime(s)\geqslant -m_1, g_2^\prime(s)\geqslant -m_2, \text{及}\int\nolimits_\Gamma |g_2(s(x))|^2\text{d}x < \infty, $ | (10) |
且
$ \lim\limits_{|s|\rightarrow \infty}\frac{g_{1}(s)s}{|s|^{q+1}}=C_{g_{1}} < 0, $ | (11) |
$ \lim\limits_{|s|\rightarrow \infty}\frac{g_{2}(s)s}{|s|^{r+1}}=C_{g_{2}}>0, $ | (12) |
其中
进一步, 为了保证问题(5)-(7)对应的动力系统为能量耗散系统, 假设内部非线性项和边界非线性项满足如下任一平衡条件
ⅰ)
ⅱ)当
ⅲ)当
ⅳ)当
ⅴ)当
其中,
近年来, 关于经典反应扩散方程的渐近性态已引起了许多学者的关注和兴趣.在Dirichlet边界条件下, 文献[2-4]研究了记忆型经典反应扩散方程解的渐近性.当非线性项次临界增长时, Giorgi和Pata在文献[2]中得到了有界吸收集在空间
据我们所知, 因为衰退记忆项在非线性边界下能量估计存在困难, 记忆型反应扩散方程在非线性边界下解的动力学行为还很少有人研究, 因而引发了我们的研究兴趣.借助文献[6-8]的思想和观点, 我们在上述结果基础上继续讨论和研究了记忆型模型对应动力系统的非线性动力学行为.同时, 我们发现研究工作的重心和难点依然是解半群的紧性验证.由于内部非线性项和边界非线性项均以超临界指数增长, 在边界上紧嵌入定理失效以及衰退记忆项所在的记忆空间缺乏紧性, 使得紧性验证面临许多实质性困难.最终我们运用收缩函数方法和半群理论成功地攻克了上述实质性研究障碍, 证明了全局吸引子在空间
本文的结构如下:在第1节, 介绍所研究问题涉及的预备知识, 包括空间的定义和抽象结果; 在第2节, 证明了全局吸引子在空间
如同文献[9], 设
$ \langle\cdot, \cdot\rangle_{D(A^{\frac{s}{2}})}= \langle A^{\frac{s}{2}}\cdot, A^{\frac{s}{2}}\cdot \rangle, \|\cdot\|_{D(A^{\frac{s}{2}})}=\|A^{\frac{s}{2}}\cdot\|, $ |
这里
对于
$ \mathcal{H}_{s}=D(A^{\frac{s}{2}}), \|\cdot\|_{\mathcal{H}_{s}}=\|\cdot\|_{D(A^{\frac{s}{2}})}, $ |
则
$ \begin{align*} \langle\varphi_{1}, \varphi_{2}\rangle_{\mu, \mathcal{H}_{r}}&=\int\nolimits^{\infty}_{0}\mu(s)\langle\varphi_{1}(s), \varphi_{2}(s)\rangle_{\mathcal{H}_{r}}\text{d}s, \\ \|\varphi\|_{\mu, \mathcal{H}_{r}}^2&=\int\nolimits^{\infty}_{0}\mu(s)\|\varphi\|^{2}_{\mathcal{H}_{r}}\text{d}s. \end{align*} $ |
定义如下Hilbert空间族
$ \mathcal E_r=\mathcal H_{r-1}\times L_\mu ^2(\mathbb R^+; \mathcal H_r), $ |
并且赋予范数:
$ \| z\| _{\mathcal E_r}=\| (u, \eta^t )\| _{\mathcal E_r} =\Big(\frac{1}{2}(\| u\|_{\mathcal H_{r-1}} ^2+\| \eta ^t\| _{\mu , \mathcal H_r}^2)\Big)^{\frac{1}{2}}. $ |
为了便于估计, 我们还需要以下抽象结果.
引理1.1[10] 对于给定的
$ \langle \eta^t, \eta_s^t\rangle_{\mu, \mathcal H_r}\geqslant \frac{\delta}{2}\|\eta^t\|_{\mu, \mathcal H_r}^2. $ |
引理1.2[8] 存在常数
$ \Big\|\varphi-\frac{1}{|\Gamma|}\int\nolimits_{\Gamma}\varphi \text{d}x\Big\|_{L^{1}(\Omega)}\leqslant C_{0}(\Omega, 1)\|\nabla\varphi\|_{L^{1}(\Omega)}. $ |
以下预备结果出自Sun, Cao和Duan[11-12], Robinson[13]和Temam[14], 用于验证解半群的渐近紧性.
定义1.1[11-12] 设
$ \lim\limits_{k\to \infty}\lim\limits_{l\to \infty}\phi(x_{n_k}, x_{n_l})=0. $ |
记
引理1.3[11-14] 设
$ \|S(T)x-S(T)y\|\leqslant \varepsilon + \phi_{T}(x, y), \quad \forall x, y\in B_0, $ |
其中
首先, 关于问题(5)—(7)的解做出如下定义.
定义2.1 对于给定的
$ u\in (L^2(I; \mathcal H_1)\cap L^{p+1}(I; L^{p+1}(\Omega))\times L^{q+1}(I;L^{q+1}(\Gamma))) \times L^{r+1}(I;L^{r+1}(\Gamma)), \\ \eta^t\in L^2(I; L_\mu^2(\mathbb R^+; \mathcal H_1));\\ \eta_t^t+\eta_s^t\in L^\infty(I; L_\mu^2(\mathbb R^+; \mathcal H_0))\cap L^2(I; L_\mu^2(\mathbb R^+; \mathcal H_1)). $ |
称
$ \langle u_t, \omega\rangle+\langle u, \omega\rangle_{\mathcal H_1}+\langle\eta^t, \omega\rangle_{\mu, \mathcal H_1}+\langle f(u), \omega\rangle=\langle g, \omega\rangle, \\ \langle \eta_t^t+\eta_s^t, \varphi\rangle_{\mu, \mathcal H_1}=\langle u, \varphi\rangle_{\mu, \mathcal H_1}, $ |
对于所有的
运用文献[10]、[14]中的Galerkin逼近方法, 可以得到问题(5)—(7)的解
定理2.1 设非线性项
$ u\in (L^{2}(I;\mathcal{H}_{1})\cap L^{p+1}(I;L^{p+1}(\Omega)) \times L^{q+1}(I;L^{q+1}(\Gamma)))\times L^{r+1}(I;L^{r+1}(\Gamma)), \\ z\in L^{2}(I;\mathcal{E}_{1})\cap L^{\infty}([0, \infty];\mathcal{E}_{1}). $ |
进一步, 映射
根据定理2.1, 可以定义问题(5)—(7)在空间
$ S(t):\mathcal{E}_{1}\rightarrow \mathcal{E}_{1}, \\ z_{0}=(u_0, \eta^0)\mapsto (u(t), \eta^t)=S(t)z_{0}. $ |
首先, 关于问题(5)—(7)的解在空间
引理2.1 设
$ \|z(t)\|_{\mathcal E_1}^{2}\leqslant\rho_{0}^{2}, t \geqslant t_{0}. $ |
证明 用
$ \frac{1}{2}\cdot\frac{\text{d}}{\text{d}t}\|u\|^{2}+\|\nabla u\|^{2}+\int\nolimits_{\Gamma}g_1(u)u\text{d}x\\ -\int\nolimits^{\infty}_{0}\mu(s)\langle\Delta\eta^{t}(s), u(t)\rangle\text{d}s+\int\nolimits_{\Omega} f(u)u\text{d}x \\ =\int\nolimits_\Omega h(x)u\text{d}x. $ | (13) |
首先, 根据引理1.1易知
$ -\int\nolimits^{\infty}_{0}\mu(s)\langle\Delta\eta^{t}(s), u(t)\rangle\text{d}s\\ =\int\nolimits^{\infty}_{0}\mu(s)\langle\nabla\eta^{t}(s), \nabla\eta^{t}_{t}(x, s)+\nabla\eta^{t}_{s}(x, s)\rangle\text{d}s- \int\nolimits^{\infty}_{0}\mu(s)\Big\langle\frac{\partial\eta^{t}(s)} {\partial \gamma}, u\Big\rangle_{\Gamma}\text{d}s \\ \geqslant\frac{1}{2}\cdot\frac{\text{d}}{\text{d}t}\|\eta^{t}\|^{2}_{\mu, \mathcal{H}_{1}}+\frac{\delta}{2}\|\eta^{t}\|^{2}_{\mu, \mathcal{H}_{1}}+ \int\nolimits^{\infty}_{0}\mu(s)\langle g_{2}(u), u\rangle_{\Gamma}\text{d}s. $ |
并且, 根据引理1.2可得
$ \begin{align} \int\nolimits^{\infty}_{0}&\mu(s)\langle g_{2}(u), u\rangle_{\Gamma}\text{d}s\\ =&k_{0}\Big(-\frac{|\Gamma|}{|\Omega|}\int\nolimits_{\Omega}\Big(g_{2}(u)u-\frac{1}{|\Gamma|}\int\nolimits_{\Gamma}g_{2}(u)u\text{d}x\Big)\text{d}x +\frac{|\Gamma|}{|\Omega|}\int\nolimits_{\Omega}g_{2}(u)u\text{d}x\Big)\\ \geqslant& -\frac{1}{4}\|\nabla u\|^{2}-\mathcal{R}^{2}k^{2}_{0}\|g'_{2}(u)u+g_{2}(u)\|^{2}+k_{0} \frac{|\Gamma|}{|\Omega|}\int\nolimits_{\Omega}g_{2}(u)u\text{d}x, \end{align} $ |
其中,
$ \begin{align} \int\nolimits_{\Gamma}g_{1}&(u)u\text{d}x\\ =&\frac{|\Gamma|}{|\Omega|}\int\nolimits_{\Omega}g_{1}(u)u\text{d}x-\frac{|\Gamma|}{|\Omega|}\int\nolimits_{\Omega} \Big(g_{1}(u)u- \frac{1}{|\Gamma|}\int\nolimits_{\Gamma}g_{1}(u)u\text{d}x\Big)\text{d}x\\ \geqslant&-\frac{1}{4}\|\nabla u\|^{2}+\int\nolimits_{\Omega}\Big(\frac{|\Gamma|}{|\Omega|}g_{1}(u)u- \mathcal{R}^{2}(g'_{1}(u)u+g_{1}(u))^{2}\Big)\text{d}x. \end{align} $ |
令
$ H_{1}(u)=f(u)u+\frac{|\Gamma|}{|\Omega|}g_{1}(u)u+k_{0}\frac{|\Gamma|}{|\Omega|}g_{2}(u)u-\\ \mathcal{R}^{2}(g'_{1}(u)u+g_{1}(u))^{2}- \mathcal{R}^{2}k^{2}_{0}(g'_{2}(u)u+g_{2}(u))^{2}. $ |
根据非线性项平衡条件
$ H_{1}(u)\geqslant C_{1}|u|^{p+1}-C_{2}. $ |
另外, 根据Cauchy不等式, 易得
$ \langle h(x), u\rangle\leqslant\frac{\lambda_1}{4}\|u\|^{2}+\frac{\|h\|^{2}}{\lambda_1}. $ |
将以上估计代入式(13), 可得
$ \begin{align} \frac{1}{2}&\cdot\frac{\text{d}}{\text{d}t}(\| u\|^2+\|\eta^t\|_{\mu, \mathcal H_1}^2)+\frac{1}{4}\| \nabla u\|^2+\frac{\delta}{2}\|\eta^t\|_{\mu, \mathcal H_1}^2+C_1\int\nolimits_\Omega{|u|^{p+1}\text{d}x} \\ &\leqslant \frac{1}{\lambda_1}\|h\|^2+C_2|\Omega|. \end{align} $ | (14) |
应用Poincaré不等式, 可得
$ \frac{1}{2}\cdot\frac{\text{d}}{\text{d}t}(\|u\|^{2}+\|\eta^{t}\|^{2}_{\mu, \mathcal{H}_{1}})+\frac{\lambda_{1}}{4}\|u\|^{2}+ \frac{\delta}{2}\|\eta^{t}\|^{2}_{\mu, \mathcal{H}_{1}} \leqslant\frac{\|h\|^{2}}{\lambda_1}+C_{3}, $ |
其中,
取
$ \frac{\text{d}}{\text{d}t}(\|u\|^{2}+\|\eta^{t}\|^{2}_{\mu, \mathcal{H}_{1}})+\alpha(\|u\|^{2}+\|\eta^{t}\|^{2}_{\mu, \mathcal{H}_{1}}) \leqslant2\frac{\|h\|^{2}}{\lambda_1}+2C_{3}. $ |
应用Gronwall引理, 可得
$ \|u(t)\|^{2}+\|\eta^{t}\|^{2}_{\mu, \mathcal{H}_{1}}\leqslant (\|u(0)\|^{2}+\|\eta^{0}(s)\|^{2}_{\mu, \mathcal{H}_{1}}) {\rm e}^{-\alpha t}+\frac{2}{\alpha}\Big(\frac{\|h\|^{2}}{\lambda_1}+C_{3}\Big), $ |
故
$ \|z(t)\|_{\mathcal E_1}^{2}\leqslant(\|u(0)\|^{2}+\| \eta^{0}(s)\|^{2}_{\mu, \mathcal{H}_{1}}){\rm e}^{-\alpha t}+C. $ |
由于
$ \|z(t)\|_{\mathcal E_1}\leqslant\rho_{0}. $ | (15) |
证毕.
根据引理2.1可得有界吸收集的存在性, 即
定理2.2(有界吸收集存在定理) 若引理2.1的假设成立, 则对于任意有界子集
$ \|S(t)z_{0}\|\leqslant\rho_{0}. $ |
为了证明全局吸引子在
引理2.2 设
$ \int\nolimits_t^{t+1}{\|\nabla u(s)\|^2\text{d}s}\leqslant N_0, t\geqslant 0. $ | (16) |
证明 对式(14)在
$ \begin{align} \frac{1}{2}\int\nolimits_t^{t+1}&{\|\nabla u(s)\|^2\text{d}s}+\delta\int\nolimits_t^{t+1}{\| \eta^s\|_{\mu, \mathcal H_1}^2\text{d}s}+2C_1\int\nolimits_t^{t+1}\int\nolimits_\Omega|u|^{p+1}\text{d}x\text{d}s\\&\leqslant \frac{2\|h\|^2}{\lambda_1}+C, t\geqslant 0. \end{align} $ |
故式(16)成立, 证毕.
根据无穷维动力系统全局吸引子的存在性定理(见文献[14-15]), 类似于文献[16], 还需验证强弱连续半群
定理2.3 设
证明 设
记
$ w_{t}+Aw+\int\nolimits_0^\infty{\mu (s)A \xi ^t(s)\text{d}s}+f(u_1)-f(u_2)=0, $ | (17) |
相应边值条件为
$ \left\{\!\!\begin{array}{ll} \dfrac{\partial w}{\partial \gamma}+g_{1}(u_1)-g_1(u_2)=0, & (x, t) \in \Gamma\times\mathbb{R}^{+}, \\ \dfrac{\partial\xi^{t}}{\partial \gamma}+g_{2}(u_1)-g_2(u_2)=0, & (x, t) \in \Gamma\times\mathbb{R}^{+}. \end{array} \right. $ | (18) |
相应初值条件为
$ \left\{\!\!\begin{array}{ll} w(0)=u_{10}-u_{20}, \\ \xi^0=\eta_1^0-\eta_2^0. \end{array} \right. $ | (19) |
将式(17)与
$ \frac{1}{2}\cdot\frac{\text{d}}{\text{d}t}\| w\| ^2+\|\nabla w\|^2+\\ \int\nolimits_\Gamma (g_1(u_1)-g_1(u_2))w\text{d}x+\int\nolimits_0^\infty{\mu (s)\langle\nabla\xi ^t(s), \nabla w\rangle} \text{d}s\\[1mm] +\int\nolimits_0^\infty{\mu(s)\int\nolimits_\Gamma (g_2(u_1)-g_2(u_2))w\text{d}x}\text{d}s+\langle f(u_1)-f(u_2), w\rangle=0. $ | (20) |
定义如下泛函:
$ F(t)=\frac{1}{2}(\| w\|^2+\| \xi ^t\| _{\mu, \mathcal H_1}^2). $ |
故
$ \begin{align} \frac{\text{d}}{\text{d}t}F(t)=&\int\nolimits_\Omega { w(t) w_t(t)\text{d}x}+\int\nolimits_0^\infty {\mu (s)\langle\nabla \xi _t^t(s), \nabla \xi ^t(s)\rangle \text{d}s}\\ =&-\| \nabla w\|^2-\int\nolimits_\Gamma (g_1(u_1)-g_1(u_2))w\text{d}x-\frac{1}{2}\int\nolimits_0^\infty {\mu (s)\frac{\text{d}}{\text{d}s}| \nabla \xi ^t(s)| ^2\text{d}s}\\ &-\int\nolimits_0^\infty{\mu (s)\int\nolimits_\Gamma (g_2(u_1)-g_2(u_2))w\text{d}x}\text{d}s-\langle f(u_1)-f(u_2), w\rangle. \end{align} $ |
利用条件(8), 可得
$ -\langle f(u_1)-f(u_2), w\rangle \leqslant l\| w\|^2. $ |
利用条件(10), 可得
$ -\int\nolimits_\Gamma (g_1(u_1)-g_1(u_2))w\text{d}x \leqslant m_1 \int\nolimits_\Gamma |w|^2\text{d}x\\ =-m_1\frac{|\Gamma|}{|\Omega|}\int\nolimits_{\Omega} |w|^2\text{d}x+m_1\frac{|\Gamma|}{|\Omega|}\int\nolimits_{\Omega}\Big||w|^2- \frac{1}{|\Gamma|}\int\nolimits_{\Gamma}|w|^2\text{d}x\Big| \text{d}x\\ \leqslant\frac{1}{4}\|\nabla w\|^{2}-m_1\int\nolimits_{\Omega} \Big(\frac{|\Gamma|}{|\Omega|}|w|^2-4m_1\mathcal{R}^{2}|w|^2\Big)\text{d}x\\ \leqslant\frac{1}{4}\|\nabla w\|^{2}+\Big(4m_1^2\mathcal{R}^{2}+m_1\frac{|\Gamma|}{|\Omega|}\Big)\| w\|^2, $ |
并且
$ -\int\nolimits_0^\infty{\mu (s)\int\nolimits_\Gamma (g_2(u_1)-g_2(u_2))w\text{d}x}\text{d}s \leqslant m_2k_0 \int\nolimits_\Gamma |w|^2\text{d}x\\ =\frac{1}{4}\|\nabla w\|^{2}+\Big(4m_2^2k_0^2\mathcal{R}^{2}+m_2k_0\frac{|\Gamma|}{|\Omega|}\Big)\| w\|^2. $ |
根据引理1.1可知
$ -\frac{1}{2}\int\nolimits_0^\infty {\mu (s)\frac{\text{d}}{\text{d}s}| \nabla \xi ^t(s)| ^2\text{d}s} \leqslant -\frac{\delta}{2}\|\xi^t\|_{\mu, \mathcal H_1}^2, $ |
故
$ \frac{\text{d}}{\text{d}t}F(t)+C_\delta F(t)\leqslant C^*\| w(t)\|^2, $ | (21) |
其中, 常数
对于任意给定的
$ F(T)\leqslant {\rm e}^{-C_\delta T} F(0)+C^*{\rm e}^{-C_\delta T}\int\nolimits_0^T{{\rm e}^{C_\delta s} \| w(s)\|^2\text{d}s}. $ |
对应于引理1.3, 设
$ \phi_T(z_1, z_2)=C^*{\rm e}^{-C_\delta T}\int\nolimits_0^T{{\rm e}^{C_\delta s} \|u_1(s)- u_2(s)\|^2\text{d}s}. $ |
下面将证明
根据定义1.1, 对于任意序列
$ \lim\limits_{l\rightarrow\infty} \lim\limits_{m\rightarrow\infty}\int\nolimits_0^T{\|\nabla u_{n_l}(s)-\nabla u_{n_m}(s)\|^2\text{d}s}=0, $ |
其中,
因此需证明
首先, 对式(14)在
$ \begin{align} \frac{1}{2}&\int\nolimits_0^{T}{\|\nabla u(s)\|^2\text{d}s}+\delta\int\nolimits_0^{T}{\| \eta^s\|_{\mu, \mathcal H_1}^2\text{d}s}+2C_1\int\nolimits_0^{T}\int\nolimits_\Omega|u|^{p+1}\text{d}x\text{d}s\\&\leqslant \frac{2T\|h\|^2}{\lambda_1}+CT, t\geqslant 0. \end{align} $ |
则
其次, 利用方程(5), 有
$ u_t=\Delta u+\int\nolimits_0^\infty{\mu(s)\Delta \eta^t(s)\text{d}s}-f(u)+h(x). $ |
显然,
最后, 对于任意的
$ \begin{align} \int\nolimits_0^\infty &{\mu(s)\langle\Delta \eta^t(s), v(t)\rangle \text{d}s}\\ \leqslant&\int\nolimits_0^\infty{\mu(s)\|\nabla \eta^t(s)\|\cdot\|\nabla v(t)\|\text{d}s}+k_0\int\nolimits_\Gamma g_2(u)v\text{d}x, \end{align} $ |
其中,
$ \begin{align} \int\nolimits_0^\infty&{\mu(s)\|\nabla \eta^t(s)\|\cdot\|\nabla v(t)\|\text{d}s} \\ \leqslant &\Big(\int\nolimits_0^\infty{\mu(s)\|\nabla \eta^t(s)\|^2\text{d}s}\Big)^{\frac{1}{2}} \cdot\Big(\int\nolimits_0^\infty{\mu(s)\|\nabla v(t)\|^2\text{d}s}\Big)^{\frac{1}{2}}\\ \leqslant&k_0^{1/2}\|\nabla v\| \Big(\int\nolimits_0^\infty{\mu(s)\|\nabla \eta^t(t)\|^2\text{d}s}\Big)^{\frac{1}{2}}. \end{align} $ |
并且, 利用式(12)及引理1.2可得
$ \begin{align} k_0\int\nolimits_\Gamma &g_2(u)v\text{d}x\\[2mm] \leqslant&k_0\Big(\int\nolimits_\Gamma |g_2(u)|^2 \text{d}x\Big)^{\frac{1}{2}}\cdot \Big(\int\nolimits_\Gamma |v|^2\text{d}x\Big)^{\frac{1}{2}}\\[2mm] \leqslant&k_{0}C\Big(\frac{|\Gamma|}{|\Omega|} \int\nolimits_{\Omega}\Big||v|^2-\frac{1}{|\Gamma|}\int \nolimits_{\Gamma}|v|^2\text{d}x\Big|\text{d}x +\frac{|\Gamma|}{|\Omega|}\int\nolimits_{\Omega}|v|^2\text{d}x\Big)^{\frac{1}{2}}\\[2mm] \leqslant &k_{0}C\Big(R\|\nabla v\|^2+\frac{|\Gamma|}{|\Omega|}\|v\|^2\Big)^{\frac{1}{2}}. \end{align} $ |
利用式(15), 易知
根据引理1.2、定理2.2和定理2.3, 可以得到以下本文的主要结果.
定理2.4(全局吸引子存在定理) 如果定理2.3的假设成立, 则问题(5)—(7)对应的解半群
[1] |
DAFERMOS C M. Asymptotic stability in viscoelasticity[J]. Archive Rational Mechanics & Analysis, 1970, 37(4): 297-308. |
[2] |
GIORGI C, PATA V. Asymptotic behavior of a nonlinear hyperbolic heat equation with memory[J]. Nonlinear Differential Equations and Applications NoDEA, 2001, 8(2): 157-171. DOI:10.1007/PL00001443 |
[3] |
CHEPYZHOV V V, MIRANVILLE A. On trajectory and global attractors for semilinear heat equations with fading memory[J]. Indiana University Mathematics Journal, 2006, 55(1): 119-168. DOI:10.1512/iumj.2006.55.2597 |
[4] |
汪璇, 朱宗伟, 马巧珍. 带衰退记忆的经典反应扩散方程的全局吸引子[J]. 数学年刊(中文版), 2014, 35(4): 423-434. |
[5] |
CARVALHO A N, OLIVA S M, PEREIRA A L, et al. Attractors for parabolic problems with nonlinear boundary conditions[J]. Journal of Mathematical Analysis and Applications, 1997, 207(1/2): 409-461. |
[6] |
YANG L, YANG M H. Attractors of the non-autonomous reaction-diffusion equation with nonlinear boundary condition[J]. Nonlinear Analysis:Real World Applications, 2010, 11(5): 3946-3954. DOI:10.1016/j.nonrwa.2010.03.002 |
[7] |
YANG L. Asymptotic regularity and attractors of the reaction-diffusion equation with nonlinear boundary condition[J]. Nonlinear Analysis:Real World Applications, 2012, 13(3): 1069-1079. DOI:10.1016/j.nonrwa.2011.02.024 |
[8] |
RODRÍGUEZ-BERNAL A, TAJDINE A. Nonlinear balance for reaction diffusion equations under nonlinear boundary conditions:Dissipativity and blow-up[J]. Journal of Differential Equations, 2001, 169(2): 332-372. |
[9] |
PATA V, SQUASSINA M. On the strongly damped wave equation[J]. Communications in Mathematical Physics, 2005, 253(3): 511-533. |
[10] |
PATA V, ZUCCHI A. Attractors for a damped hyperbolic equation with linear memory[J]. Advances in Mathematical Sciences and Applications, 2001, 11(2): 505-529. |
[11] |
SUN C Y, CAO D M, DUAN J Q. Non-autonomous wave dynamics with memory-asymptotic regularity and uniform attractor[J]. Discrete and continuous dynamical systems (Series B), 2008, 9: 743-761. DOI:10.3934/dcdsb |
[12] |
SUN C Y, CAO D M, DUAN J Q. Non-autonomous dynamics of wave equations with nonlinear damping and critical nonlinearity[J]. Nonlinearity, 2006, 19(11): 2645-2665. DOI:10.1088/0951-7715/19/11/008 |
[13] |
ROBINSON J C. Infinite-Dimensional Dynamical Systems an Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors[M]. Cambridge: Cambridge University Press, 2001.
|
[14] |
TEMAM R. Infinite Dimensional Dynamical System in Mechanics and Physics[M]. Berlin: SpringVerlag, 1997.
|
[15] |
HALE J K. Asymptotic behavior of dissipative systems[M]. Providence, RI: American Mathematical Society, 1988.
|
[16] |
张玉宝, 汪璇. 无阻尼弱耗散抽象发展方程的强全局吸引子[J]. 华东师范大学学报(自然科学版), 2017, 2: 8-19. DOI:10.3969/j.issn.1000-5641.2017.02.002 |